51 research outputs found
Seasonal and inter-annual patterns of sediment-water nutrient and oxygen fluxes in Mobile Bay, Alabama (USA): Regulating factors and ecological significance.
Sediment oxygen and nutrient fluxes were measured monthly for 2 yr in Mobile Bay, Alabama, USA. Rates of sediment oxygen consumption (0.1 to 1.25 gO2 m-2 d-1), ammonium flux (-22 to 181 µmol m-2 h-1), nitrate flux (-14 to 67 µmol m-2 h-1), phosphate flux (-2 to 20.4 µmol m-2 h-1), and dissolved silicate flux (-15 to 342 µmol m-2 h-1) were moderate to high compared to values for other estuaries. A step-wise regression analysis revealed that dissolved oxygen concentration and temperature in bottom-waters explained much of the variance in fluxes. This is presumably because of their influence on rates of microbial and physico-chemical processes. Organic matter availability was not found to be an important factor in regulating temporal (month to month) variability of fluxes, possibly because frequent resuspension of the sediments in this shallow system rendered indices of sediment organic matter nearly constant with time. However, warm season-averaged sediment nutrient releases were correlated with sediment chlorophyll a. This relationship in Mobile Bay is in strong agreement with similar relationships found in other estuarine systems, and suggests that the availability of labile organic matter ultimately regulates the maximum rate of nutrient release by the sediments. Annually averaged sediment fluxes supplied 36% of the nitrogen (N) and 25% of the phosphorus (P) required by phytoplankton in Mobile Bay. While this is not particularly high compared to other estuaries, monthly estimates show that the sediments can supply from 0 to 94% of the N, and 0 to 83% of the P required by phytoplankton. In addition, flux ratios show that N and P are released from sediments at N:P ratios that rapidly switch from above (maximum 98) to below (minimum 1.2) that required for phytoplankton growth. This pattern is different from cooler temperate systems, where such switching is seasonally base
Effects of macrobenthos on sediment-water oxygen and ammonium fluxes. Final Report.
Sediments are an important location in determining the fate of nutrients entering the estuary. Role of sediments needs to be incorporated into water quality models. Purpose of this study was to estimate the portion of sediment oxygen consumption (SOC) and sediment ammonium (NH4+) release directly attributable to benthic invertebrates via the respiratory use of oxygen and catabolic release of ammonium.
Samples were collected at 8 locations from August 1985 through November 1988. (PDF contains 45 pages
Carbon cycling in mesohaline Chesapeake Bay sediments 1: POC deposition rates and mineralization pathways
Organic carbon cycling in sediments at two locations in the mesohaline Chesapeake Bay was analyzed using available data on sediment sulfate reduction, sediment oxygen consumption, and particulate organic carbon (POC) deposition and burial. Estimates of POC deposition based on the sum of integrated sediment metabolism and POC burial compared well with direct estimates derived from chlorophyll-a collection rates in mid-water column sediment traps. The range of POC deposition estimates (15–31 mol C m−2 yr−1) accounted for a large fraction (36–74%) of average annual net primary production in the mesohaline Bay. The difference between rates of POC deposition and permanent burial indicated that 70–85% of deposited carbon is mineralized on the time scale of a year. Carbon mineralization through sulfate reduction accounted for 30–35% of average net primary production, and was likely responsible for 60–80% of total sediment carbon metabolism. Oxidation of reduced sulfur accounted for a large but quantitatively uncertain portion of SOC in mid-Bay sediments. Our results highlight the quantitative significance of organic carbon sedimentation and attendant anaerobic sediment metabolism in the carbon cycle of a shallow, highly productive estuary
How Should Research And Monitoring Be Integrated?
Scientific knowledge of Chesapeake Bay and tidal tributaries has accumulated over many years beginning mostly with descriptive surveys prior to the 1960\u27s and 1970\u27s and evolving towards a coupling of monitoring and research in recent years. This essay discusses the need to more fully couple monitoring and research efforts in the Bay system because such a union of efforts is argued to be the most effective way to assess gross trends in the health of the system (monitoring) and to understand the basic forces causing these trends (research). We argue that together they provide part of the framework necessary for effective management of the living resources of the bay region.https://scholarworks.wm.edu/vimsbooks/1176/thumbnail.jp
Probing the Neutron Star Interior with Glitches
With the aim of constraining the structural properties of neutron stars and
the equation of state of dense matter, we study sudden spin-ups, glitches,
occurring in the Vela pulsar and in six other pulsars. We present evidence that
glitches represent a self-regulating instability for which the star prepares
over a waiting time. The angular momentum requirements of glitches in Vela
indicate that at least 1.4% of the star's moment of inertia drives these
events. If glitches originate in the liquid of the inner crust, Vela's
`radiation radius' must exceed ~12 km for a mass of 1.4 solar
masses. The isolated neutron star RX J18563-3754 is a promising candidate for a
definitive radius measurement, and offers to further our understanding of dense
matter and the origin of glitches.Comment: Invited talk at the Pacific Rim Conference on Stellar Astrophysics,
Hong Kong, Aug. 1999. 9 pages, 5 figure
Nutrient Enrichment Drives Gulf of Mexico Hypoxia
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95312/1/eost16763.pd
Pulsar Constraints on Neutron Star Structure and Equation of State
With the aim of constraining the structural properties of neutron stars and
the equation of state of dense matter, we study sudden spin-ups, glitches,
occurring in the Vela pulsar and in six other pulsars. We present evidence that
glitches represent a self-regulating instability for which the star prepares
over a waiting time. The angular momentum requirements of glitches in Vela
indicate that at least 1.4% of the star's moment of inertia drives these
events. If glitches originate in the liquid of the inner crust, Vela's
`radiation radius' must exceed ~12 km for a mass of 1.4 solar masses.
Observational tests of whether other neutron stars obey this constraint will be
possible in the near future.Comment: 5 pages, including figures. To appear in Physical Review Letter
Volcanic and geochemical evolution of the Teno massif, Tenerife, Canary Islands: some repercussions of giant landslides on ocean island magmatism
Large-scale, catastrophic mass wasting is a major process contributing to the dismantling of oceanic intraplate volcanoes. Recent studies, however, have highlighted a possible feedback relationship between flank collapse, or incipient instability, and subsequent episodes of structural rearrangement and/or renewed volcano growth. The Teno massif, located in northwestern Tenerife (Canary Islands), is a deeply eroded Miocene shield volcano that was built in four major eruptive phases punctuated by two lateral collapses, each removing >20–25 km3 of the volcano's north flank. In this paper, we use detailed field observations and petrological and geochemical data to evaluate possible links between large-scale landslides and subsequent volcanism/magmatism during Teno's evolution. Inspection of key stratigraphic sequences reveals that steep angular unconformities, relics of paleolandslide scars, are marked by polymict breccias. Near their base, these deposits typically include abundant juvenile pyroclastic material, otherwise scarce in the region. While some of Teno's most evolved, low-density magmas were produced just before flank collapses, early postlandslide lava sequences are characterized by anomalously high proportions of dense ankaramite flows, extremely rich in clinopyroxene and olivine crystals. A detailed sampling profile shows transitions from low-Mg # lavas relatively rich in SiO2 to lavas with low silica content and comparatively high Mg # after both landslides. Long-term variations in Zr/Nb, normative nepheline, and La/Lu are coupled but do not show a systematic correlation with stratigraphic boundaries. We propose that whereas loading of the growing precollapse volcano promoted magma stagnation and differentiation, the successive giant landslides modified the shallow volcano-tectonic stress field at Teno, resulting in widespread pyroclastic eruptions and shallow magma reservoir drainage. This rapid unloading of several tens of km3 of near-surface rocks appears to have upset magma differentiation processes, while facilitating the remobilization and tapping of denser ankaramite magmas that were stored in the uppermost mantle. Degrees of mantle melting coincidently reached a maximum in the short time interval between the two landslides and declined shortly after, probably reflecting intrinsic plume processes rather than a collapse-induced influence on mantle melting. Our study of Teno volcano bears implications for other oceanic volcanoes where short-term compositional variations may also directly relate to major flank collapse events
Inverse Compton X-ray Emission from Supernovae with Compact Progenitors: Application to SN2011fe
We present a generalized analytic formalism for the inverse Compton X-ray
emission from hydrogen-poor supernovae and apply this framework to SN2011fe
using Swift-XRT, UVOT and Chandra observations. We characterize the optical
properties of SN2011fe in the Swift bands and find them to be broadly
consistent with a "normal" SN Ia, however, no X-ray source is detected by
either XRT or Chandra. We constrain the progenitor system mass loss rate to be
lower than 2x10^-9 M_sun/yr (3sigma c.l.) for wind velocity v_w=100 km/s. Our
result rules out symbiotic binary progenitors for SN2011fe and argues against
Roche-lobe overflowing subgiants and main sequence secondary stars if >1% of
the transferred mass is lost at the Lagrangian points. Regardless of the
density profile, the X-ray non-detections are suggestive of a clean environment
(particle density < 150 cm-3) for (2x10^15<R<5x10^16) cm around the progenitor
site. This is either consistent with the bulk of material being confined within
the binary system or with a significant delay between mass loss and supernova
explosion. We furthermore combine X-ray and radio limits from Chomiuk et al.
2012 to constrain the post shock energy density in magnetic fields. Finally, we
searched for the shock breakout pulse using gamma-ray observations from the
Interplanetary Network and find no compelling evidence for a
supernova-associated burst. Based on the compact radius of the progenitor star
we estimate that the shock break out pulse was likely not detectable by current
satellites.Comment: Submitted to Ap
- …