7,952 research outputs found
The Human Right to Water and Unconventional Energy
Access to water, in sufficient quantities and of sufficient quality is vital for human health. The United Nations Committee on Economic, Social and Cultural Rights (in General Comment 15, drafted 2002) argued that access to water was a condition for the enjoyment of the right to an adequate standard of living, inextricably related to the right to the highest attainable standard of health, and thus a human right. On 28 July 2010 the United Nations General Assembly declared safe and clean drinking water and sanitation a human right essential to the full enjoyment of life and all other human rights. This paper charts the international legal development of the right to water and its relevance to discussions surrounding the growth of unconventional energy and its heavy reliance on water. We consider key data from the country with arguably the most mature and extensive industry, the USA, and highlight the implications for water usage and water rights. We conclude that, given the weight of testimony of local people from our research, along with data from scientific literature, non-governmental organization (NGO) and other policy reports, that the right to water for residents living near fracking sites is likely to be severely curtailed. Even so, from the data presented here, we argue that the major issue regarding water use is the shifting of the resource from society to industry and the demonstrable lack of supply-side price signal that would demand that the industry reduce or stabilize its water demand per unit of energy produced. Thus, in the US context alone, there is considerable evidence that the human right to water will be seriously undermined by the growth of the unconventional oil and gas industry, and given its spread around the globe this could soon become a global human rights issue
The V471 Tauri System: A Multi-datatype Probe
V471 Tauri, a white dwarf--red dwarf eclipsing binary in the Hyades, is well
known for stimulating development of common envelope theory, whereby novae and
other cataclysmic variables form from much wider binaries by catastrophic orbit
shrinkage. Our evaluation of a recent imaging search that reported negative
results for a much postulated third body shows that the object could have
escaped detection or may have actually been seen. The balance of evidence
continues to favor a brown dwarf companion about 12 AU from the eclipsing
binary. A recently developed algorithm finds unified solutions from three
datatypes. New radial velocities (RVs) of the red dwarf and BV RCIC light
curves are solved simultaneously along with white dwarf and red dwarf RVs from
the literature, uvby data, the MOST mission light curve, and 40 years of
eclipse timings. Precision-based weighting is the key to proper information
balance among the various datasets. Timewise variation of modeled starspots
allows unified solution of multiple data eras. Light curve amplitudes strongly
suggest decreasing spottedness from 1976 to about 1980, followed by
approximately constant spot coverage from 1981 to 2005. An explanation is
proposed for lack of noticeable variation in 1981 light curves, in terms of
competition between spot and tidal variations. Photometric spectroscopic
distance is estimated. The red dwarf mass comes out larger than normal for a
K2V star, and even larger than adopted in several structure and evolution
papers. An identified cause for this result is that much improved red dwarf RVs
curves now exist
Resonance lamp absorption measurement of OH number density and temperature in expansion tube scramjet engine tests
In this paper, we report results of hydroxyl radical and static temperature measurements performed in the General Applied Science Laboratories-NASA HYPULSE expansion tube facility using the microwave resonance lamp absorption technique. Data were obtained as part of a series of hydrogen/air and hydrogen/oxygen combustion tests at stagnation enthalpies corresponding to Mach 17 flight speeds. Data from a representative injector configuration is compared to a full Navier-Stokes CFD solution
Active Flutter Suppression Using Reduced-Order Modeling for Transonic Aeroservoelastic Control Law Development
In this paper, several aerodynamic reduced-order models (ROMs) are generated and coupled with structural models to form aeroelastic ROMs. The aerodynamic ROMs generated here include the effects of control surface motion and are appropriate for use in aeroservoelastic applications. Simple observer-based full-state feedback controllers were designed from these aeroelastic ROMs. Additionally, observer gain matrices were designed from and coupled to the aeroelastic ROMs. Each (linear) observer was then used to estimate the dynamics of a (nonlinear) stand-alone computational fluid-structure dynamics simulation. Then, using the estimated states and the full-state feedback controller, control surface commands were fed back into the computational fluid-structure dynamics simulation to successfully achieve active flutter suppression. The process, as well as some results, are presented in this paper
Reduced Order Modeling for Transonic Aeroservoelastic Control Law Development
As aircraft become more flexible, aeroelastic considerations become increasingly important and complex, particularly for transonic flight where nonlinearities in the flow render linear analysis tools less effective. In order to analyze these aeroelastic interactions between the fluid and the structure efficiently, reduced order models (ROMs) are sometimes generated from and used in place of computational fluid dynamics solutions. In this paper, several aerodynamic ROMs are generated and coupled with structural models to form aeroelastic ROMs. The aerodynamic ROMs generated here include the effects of control surface motion. Hence, the aeroelastic ROMs presented here are appropriate for use in aeroservoelastic applications and are intended to be used for aeroservoelastic control law development. These ROMs are used to simulate a number of test cases with and without control surface involvement. Results show that several of the ROMs generated in the paper are able to predict results similar to solutions of higher-order computational methods
On the Evidence for Axion-like Particles from Active Galactic Nuclei
Burrage, Davis, and Shaw recently suggested exploiting the correlations
between high and low energy luminosities of astrophysical objects to probe
possible mixing between photons and axion-like particles (ALP) in magnetic
field regions. They also presented evidence for the existence of ALP's by
analyzing the optical/UV and X-ray monochromatic luminosities of AGNs. We
extend their work by using the monochromatic luminosities of 320 unobscured
Active Galactic Nuclei from the Sloan Digital Sky Survey/Xmm-Newton Quasar
Survey (Young et al., 2009), which allows the exploration of 18 different
combinations of optical/UV and X-ray monochromatic luminosities. However, we do
not find compelling evidence for the existence of ALPs. Moreover, it appears
that the signal reported by Burrage et al. is more likely due to X-ray
absorption rather than to photon-ALP oscillation.Comment: 16 pages, 12 figures. Updated to reflect the minor changes introduced
in the published versio
Multi-wavelength observations of the peculiar red giant HR 3126
Ultraviolet observations of the red giant HR 3126 are combined with multi-wavelength data in order to provide a firmer basis for explaining the arc-minute sized nebula surrounding the object. Possibilities as to the location of HR 3126 on the Hertzsprung-Russel diagram, and to the formation mechanisms of the reflection nebula IC 2220 associated with it, are summarized
- …