37,811 research outputs found
Interferometric rotation sensor
Sensor generates interference fringes varying in number (horizontally and vertically) as a function of the total angular deviation relative to the line-of-sight axis. Device eliminates errors from zero or null shift due to lack of electrical circuitry stability
Ferroelectric Materials for Solar Energy Conversion: Photoferroics Revisited
The application of ferroelectric materials (i.e. solids that exhibit
spontaneous electric polarisation) in solar cells has a long and controversial
history. This includes the first observations of the anomalous photovoltaic
effect (APE) and the bulk photovoltaic effect (BPE). The recent successful
application of inorganic and hybrid perovskite structured materials (e.g.
BiFeO3, CsSnI3, CH3NH3PbI3) in solar cells emphasises that polar semiconductors
can be used in conventional photovoltaic architectures. We review developments
in this field, with a particular emphasis on the materials known to display the
APE/BPE (e.g. ZnS, CdTe, SbSI), and the theoretical explanation. Critical
analysis is complemented with first-principles calculation of the underlying
electronic structure. In addition to discussing the implications of a
ferroelectric absorber layer, and the solid state theory of polarisation (Berry
phase analysis), design principles and opportunities for high-efficiency
ferroelectric photovoltaics are presented
A star field mapping system for determining the attitude of a spinning probe
Astronomical mapping by rotating satellite to determine own angle of orientation to celestial spher
Hierarchical social modularity in gorillas
Modern human societies show hierarchical social modularity (HSM) in which lower-order social units like nuclear families are nested inside increasingly larger units. It has been argued that this HSM evolved independently and after the chimpanzee–human split due to greater recognition of, and bonding between, dispersed kin. We used network modularity analysis and hierarchical clustering to quantify community structure within two western lowland gorilla populations. In both communities, we detected two hierarchically nested tiers of social structure which have not been previously quantified. Both tiers map closely to human social tiers. Genetic data from one population suggested that, as in humans, social unit membership was kin structured. The sizes of gorilla social units also showed the kind of consistent scaling ratio between social tiers observed in humans, baboons, toothed whales, and elephants. These results indicate that the hierarchical social organization observed in humans may have evolved far earlier than previously asserted and may not be a product of the social brain evolution unique to the hominin lineage
Vapor condensation process produces slurry of magnesium particles in liquid hydrocarbons
Vapor condensation apparatus produces a physically stable, homogeneous slurry of finely divided magnesium and liquid hydrocarbons. The magnesium is vaporized and the resultant vapor is cooled rapidly with a liquid hydrocarbon spray, which also serves as the dispersing medium for the condensed magnesium particles
Apparatus for making a metal slurry product Patent
Apparatus for producing hydrocarbon slurry containing small particles of magnesium for use as jet aircraft fue
Local search for stable marriage problems
The stable marriage (SM) problem has a wide variety of practical
applications, ranging from matching resident doctors to hospitals, to matching
students to schools, or more generally to any two-sided market. In the
classical formulation, n men and n women express their preferences (via a
strict total order) over the members of the other sex. Solving a SM problem
means finding a stable marriage where stability is an envy-free notion: no man
and woman who are not married to each other would both prefer each other to
their partners or to being single. We consider both the classical stable
marriage problem and one of its useful variations (denoted SMTI) where the men
and women express their preferences in the form of an incomplete preference
list with ties over a subset of the members of the other sex. Matchings are
permitted only with people who appear in these lists, an we try to find a
stable matching that marries as many people as possible. Whilst the SM problem
is polynomial to solve, the SMTI problem is NP-hard. We propose to tackle both
problems via a local search approach, which exploits properties of the problems
to reduce the size of the neighborhood and to make local moves efficiently. We
evaluate empirically our algorithm for SM problems by measuring its runtime
behaviour and its ability to sample the lattice of all possible stable
marriages. We evaluate our algorithm for SMTI problems in terms of both its
runtime behaviour and its ability to find a maximum cardinality stable
marriage.For SM problems, the number of steps of our algorithm grows only as
O(nlog(n)), and that it samples very well the set of all stable marriages. It
is thus a fair and efficient approach to generate stable marriages.Furthermore,
our approach for SMTI problems is able to solve large problems, quickly
returning stable matchings of large and often optimal size despite the
NP-hardness of this problem.Comment: 12 pages, Proc. COMSOC 2010 (Third International Workshop on
Computational Social Choice
A maximum spreading speed for magnetopause reconnection
Past observations and numerical modeling find magnetic reconnection to initiate at a localized region and then spread along a current sheet. The rate of spreading has been proposed to be controlled by a number of mechanisms based on the properties within the boundary. At the Earth's magnetopause the spreading speed is also limited by the speed at which a shocked solar wind front can move along the magnetopause boundary. The speed at which a purely north to south rotational discontinuity propagates through the magnetosheath and contacts the magnetopause is measured here using the Block‐Adaptive‐Tree Solar Wind Roe‐Type Upwind Scheme global magnetohydrodynamics model. The propagation speed along the magnetopause is fastest near the nose of the magnetopause and decreases with distance from the subsolar point. The average propagation speed along the dayside magnetopause is 847 km/s. This is significantly larger than observed rates of reconnection spreading at the magnetopause of 30–40 km/s indicating that, for the observed conditions, the speed of front propagation along the magnetopause does not limit or control the spreading rate of reconnection.Published versio
No stratification without representation
Sortition is an alternative approach to democracy, in which representatives are not elected but randomly selected from the population. Most electoral democracies fail to accurately represent even a handful of protected groups. By contrast, sortition guarantees that every subset of the population will in expectation fill their fair share of the available positions. This fairness property remains satisfied when the sample is stratified based on known features. Moreover, stratification can greatly reduce the variance in the number of positions filled by any unknown group, as long as this group correlates with the strata. Our main result is that stratification cannot increase this variance by more than a negligible factor, even in the presence of indivisibilities and rounding. When the unknown group is unevenly spread across strata, we give a guarantee on the reduction in variance with respect to uniform sampling. We also contextualize stratification and uniform sampling in the space of fair sampling algorithms. Finally, we apply our insights to an empirical case study.Accepted manuscrip
Review of operational aspects of initial experiments utilizing the U.S. MLS
An exercise to support the Federal Aviation Administration in demonstrating the U.S. candidate for an international microwave landing system (MLS) was conducted by NASA. During this demonstration the MLS was utilized to provide the TCV Boeing 737 research airplane with guidance for automatic control during transition from conventional RNAV to MLS RNAV in curved, descending flight; flare; touchdown; and roll-out. Flight profiles, system configuration, displays, and operating procedures used in the demonstration are described, and preliminary results of flight data analysis are discussed. Recent experiences with manually controlled flight in the NAFEC MLS environment are also discussed. The demonstration shows that in automatic three-dimensional flight, the volumetric signal coverage of the MLS can be exploited to enable a commercial carrier class airplane to perform complex curved, descending paths with precision turns into short final approaches terminating in landing and roll-out, even when subjected to strong and gusty tail and cross wind components and severe wind shear
- …