37,811 research outputs found

    Interferometric rotation sensor

    Get PDF
    Sensor generates interference fringes varying in number (horizontally and vertically) as a function of the total angular deviation relative to the line-of-sight axis. Device eliminates errors from zero or null shift due to lack of electrical circuitry stability

    Ferroelectric Materials for Solar Energy Conversion: Photoferroics Revisited

    Get PDF
    The application of ferroelectric materials (i.e. solids that exhibit spontaneous electric polarisation) in solar cells has a long and controversial history. This includes the first observations of the anomalous photovoltaic effect (APE) and the bulk photovoltaic effect (BPE). The recent successful application of inorganic and hybrid perovskite structured materials (e.g. BiFeO3, CsSnI3, CH3NH3PbI3) in solar cells emphasises that polar semiconductors can be used in conventional photovoltaic architectures. We review developments in this field, with a particular emphasis on the materials known to display the APE/BPE (e.g. ZnS, CdTe, SbSI), and the theoretical explanation. Critical analysis is complemented with first-principles calculation of the underlying electronic structure. In addition to discussing the implications of a ferroelectric absorber layer, and the solid state theory of polarisation (Berry phase analysis), design principles and opportunities for high-efficiency ferroelectric photovoltaics are presented

    A star field mapping system for determining the attitude of a spinning probe

    Get PDF
    Astronomical mapping by rotating satellite to determine own angle of orientation to celestial spher

    Hierarchical social modularity in gorillas

    No full text
    Modern human societies show hierarchical social modularity (HSM) in which lower-order social units like nuclear families are nested inside increasingly larger units. It has been argued that this HSM evolved independently and after the chimpanzee–human split due to greater recognition of, and bonding between, dispersed kin. We used network modularity analysis and hierarchical clustering to quantify community structure within two western lowland gorilla populations. In both communities, we detected two hierarchically nested tiers of social structure which have not been previously quantified. Both tiers map closely to human social tiers. Genetic data from one population suggested that, as in humans, social unit membership was kin structured. The sizes of gorilla social units also showed the kind of consistent scaling ratio between social tiers observed in humans, baboons, toothed whales, and elephants. These results indicate that the hierarchical social organization observed in humans may have evolved far earlier than previously asserted and may not be a product of the social brain evolution unique to the hominin lineage

    Vapor condensation process produces slurry of magnesium particles in liquid hydrocarbons

    Get PDF
    Vapor condensation apparatus produces a physically stable, homogeneous slurry of finely divided magnesium and liquid hydrocarbons. The magnesium is vaporized and the resultant vapor is cooled rapidly with a liquid hydrocarbon spray, which also serves as the dispersing medium for the condensed magnesium particles

    Apparatus for making a metal slurry product Patent

    Get PDF
    Apparatus for producing hydrocarbon slurry containing small particles of magnesium for use as jet aircraft fue

    Local search for stable marriage problems

    Full text link
    The stable marriage (SM) problem has a wide variety of practical applications, ranging from matching resident doctors to hospitals, to matching students to schools, or more generally to any two-sided market. In the classical formulation, n men and n women express their preferences (via a strict total order) over the members of the other sex. Solving a SM problem means finding a stable marriage where stability is an envy-free notion: no man and woman who are not married to each other would both prefer each other to their partners or to being single. We consider both the classical stable marriage problem and one of its useful variations (denoted SMTI) where the men and women express their preferences in the form of an incomplete preference list with ties over a subset of the members of the other sex. Matchings are permitted only with people who appear in these lists, an we try to find a stable matching that marries as many people as possible. Whilst the SM problem is polynomial to solve, the SMTI problem is NP-hard. We propose to tackle both problems via a local search approach, which exploits properties of the problems to reduce the size of the neighborhood and to make local moves efficiently. We evaluate empirically our algorithm for SM problems by measuring its runtime behaviour and its ability to sample the lattice of all possible stable marriages. We evaluate our algorithm for SMTI problems in terms of both its runtime behaviour and its ability to find a maximum cardinality stable marriage.For SM problems, the number of steps of our algorithm grows only as O(nlog(n)), and that it samples very well the set of all stable marriages. It is thus a fair and efficient approach to generate stable marriages.Furthermore, our approach for SMTI problems is able to solve large problems, quickly returning stable matchings of large and often optimal size despite the NP-hardness of this problem.Comment: 12 pages, Proc. COMSOC 2010 (Third International Workshop on Computational Social Choice

    A maximum spreading speed for magnetopause reconnection

    Get PDF
    Past observations and numerical modeling find magnetic reconnection to initiate at a localized region and then spread along a current sheet. The rate of spreading has been proposed to be controlled by a number of mechanisms based on the properties within the boundary. At the Earth's magnetopause the spreading speed is also limited by the speed at which a shocked solar wind front can move along the magnetopause boundary. The speed at which a purely north to south rotational discontinuity propagates through the magnetosheath and contacts the magnetopause is measured here using the Block‐Adaptive‐Tree Solar Wind Roe‐Type Upwind Scheme global magnetohydrodynamics model. The propagation speed along the magnetopause is fastest near the nose of the magnetopause and decreases with distance from the subsolar point. The average propagation speed along the dayside magnetopause is 847 km/s. This is significantly larger than observed rates of reconnection spreading at the magnetopause of 30–40 km/s indicating that, for the observed conditions, the speed of front propagation along the magnetopause does not limit or control the spreading rate of reconnection.Published versio

    No stratification without representation

    Full text link
    Sortition is an alternative approach to democracy, in which representatives are not elected but randomly selected from the population. Most electoral democracies fail to accurately represent even a handful of protected groups. By contrast, sortition guarantees that every subset of the population will in expectation fill their fair share of the available positions. This fairness property remains satisfied when the sample is stratified based on known features. Moreover, stratification can greatly reduce the variance in the number of positions filled by any unknown group, as long as this group correlates with the strata. Our main result is that stratification cannot increase this variance by more than a negligible factor, even in the presence of indivisibilities and rounding. When the unknown group is unevenly spread across strata, we give a guarantee on the reduction in variance with respect to uniform sampling. We also contextualize stratification and uniform sampling in the space of fair sampling algorithms. Finally, we apply our insights to an empirical case study.Accepted manuscrip

    Review of operational aspects of initial experiments utilizing the U.S. MLS

    Get PDF
    An exercise to support the Federal Aviation Administration in demonstrating the U.S. candidate for an international microwave landing system (MLS) was conducted by NASA. During this demonstration the MLS was utilized to provide the TCV Boeing 737 research airplane with guidance for automatic control during transition from conventional RNAV to MLS RNAV in curved, descending flight; flare; touchdown; and roll-out. Flight profiles, system configuration, displays, and operating procedures used in the demonstration are described, and preliminary results of flight data analysis are discussed. Recent experiences with manually controlled flight in the NAFEC MLS environment are also discussed. The demonstration shows that in automatic three-dimensional flight, the volumetric signal coverage of the MLS can be exploited to enable a commercial carrier class airplane to perform complex curved, descending paths with precision turns into short final approaches terminating in landing and roll-out, even when subjected to strong and gusty tail and cross wind components and severe wind shear
    corecore