27,583 research outputs found

    Acquisition and analysis of adaptive optics imaging polarimetry data

    Get PDF
    The process of data taking, reduction and calibration of near-infrared imaging polarimetry data taken with the ESO Adaptive Optics System ADONIS is described. The ADONIS polarimetric facility is provided by a rotating wire grid polarizer. Images were taken at increments of 22.5 degrees of polarizer rotation from 0 to 180 degrees, over-sampling the polarization curve but allowing the effects of photometric variations to be assessed. Several strategies to remove the detector signature are described. The instrumental polarization was determined, by observations of stars of negligible polarization, to be 1.7% at J, H and K bands. The lack of availability of unpolarized standard stars in the IR, in particular which are not too bright as to saturate current IR detectors, is highlighted. The process of making polarization maps is described. Experiments at restoring polarimetry data, in order to reach diffraction limited polarization, are outlined, with particular reference to data on the Homunculus reflection nebula around Eta Carinae.Comment: 20 pages, A&A LaTeX2e, 11 figures. To appear in Astronomy & Astrophysics, Supplement Serie

    An imaging and spectroscopic study of the planetary nebulae in NGC 5128 (Centaurus A): Planetary nebulae catalogues

    Full text link
    Imaging and spectroscopic observations of planetary nebulae (PNe) in the nearest large elliptical galaxy NGC 5128 (Centaurus A), were obtained to find more PNe and measure their radial velocities. NTT imaging was obtained in 15 fields in NGC 5128 over an area of about 1 square degree with EMMI using [O III] and off-band filters. Newly detected sources, combined with literature PNe, were used as input for VLT FLAMES multi-fibre spectroscopy in MEDUSA mode. Spectra of the 4600-5100A region were analysed and velocities measured based on emission lines of [O III]4959,5007A and often H-beta. The chief results are catalogues of 1118 PN candidates and 1267 spectroscopically confirmed PNe in NGC 5128. The catalogue of PN candidates contains 1060 PNe discovered with EMMI imaging and 58 from literature surveys. The spectroscopic PN catalogue has FLAMES radial velocity and emission line measurements for 1135 PNe, of which 486 are new. Another 132 PN radial velocities are available from the literature. For 629 PNe observed with FLAMES, H-beta was measured in addition to [O III]. Nine targets show double-lined or more complex profiles, and their possible origin is discussed. FLAMES spectra of 48 globular clusters were also targetted: 11 had emission lines detected (two with multiple components), but only 3 are PNe likely to belong to the host globular. The total of 1267 confirmed PNe in NGC 5128 with radial velocity measurements (1135 with small velocity errors) is the largest collection of individual kinematic probes in an early-type galaxy. This PN dataset, as well as the catalogue of PN candidates, are valuable resources for detailed investigation of the stellar population of NGC 5128. [Abridged]Comment: 19 pages, 11 figures. Accepted for publication in Astronomy and Astrophysics. Tables 7 - 11 available in electronic form at CDS. Replaced with a few typos fixe

    High Resolution CO and H2 Molecular Line Imaging of a Cometary Globule in the Helix Nebula

    Full text link
    We report high resolution imaging of a prominent cometary globule in the Helix nebula in the CO J=1-0 (2.6 mm) and H2 v=1-0 S(1) (2.12 micron) lines. The observations confirm that globules consist of dense condensations of molecular gas embedded in the ionized nebula. The head of the globule is seen as a peak in the CO emission with an extremely narrow line width (0.5 km/s) and is outlined by a limb-brightened surface of H2 emission facing the central star and lying within the photo-ionized halo. The emission from both molecular species extends into the tail region. The presence of this extended molecular emission provides new constraints on the structure of the tails, and on the origin and evolution of the globules.Comment: 12 pages, 3 figures. To appear in The Astrophysical Journal Letter

    New ammonia masers towards NGC6334I

    Full text link
    We report the detection of new ammonia masers in the non-metastable (8,6) and (11,9) transitions towards the massive star forming region NGC6334I. Observations were made with the ATCA interferometer and the emitting region appears unresolved in the 2.7" x 0.8" beam, with deconvolved sizes less than an arcsecond. We estimate peak brightness temperatures of 7.8 x 10^5 and 1.2 x 10^5 K for the (8,6) and (11,9) transitions, respectively. The masers appear coincident both spatially and in velocity with a previously detected ammonia (6,6) maser. We also suggest that emission in the (10,9), (9,9) and (7,6) transitions may also be masers, based on their narrow line widths and overlapping velocity ranges with the above masers, as observed with the single-dish Mopra radiotelescope

    Wide-field Magnetic Field and Temperature Imaging using Nanoscale Quantum Sensors

    Full text link
    The simultaneous imaging of magnetic fields and temperature (MT) is important in a range of applications, including studies of carrier transport, solid-state material dynamics, and semiconductor device characterization. Techniques exist for separately measuring temperature (e.g., infrared (IR) microscopy, micro-Raman spectroscopy, and thermo-reflectance microscopy) and magnetic fields (e.g., scanning probe magnetic force microscopy and superconducting quantum interference devices). However, these techniques cannot measure magnetic fields and temperature simultaneously. Here, we use the exceptional temperature and magnetic field sensitivity of nitrogen vacancy (NV) spins in conformally-coated nanodiamonds to realize simultaneous wide-field MT imaging. Our "quantum conformally-attached thermo-magnetic" (Q-CAT) imaging enables (i) wide-field, high-frame-rate imaging (100 - 1000 Hz); (ii) high sensitivity; and (iii) compatibility with standard microscopes. We apply this technique to study the industrially important problem of characterizing multifinger gallium nitride high-electron-mobility transistors (GaN HEMTs). We spatially and temporally resolve the electric current distribution and resulting temperature rise, elucidating functional device behavior at the microscopic level. The general applicability of Q-CAT imaging serves as an important tool for understanding complex MT phenomena in material science, device physics, and related fields
    • …
    corecore