1,861 research outputs found
Recommended from our members
Time-resolved gas-phase kinetic and quantum chemical studies of the reaction of silylene with oxygen
Time-resolved kinetic studies of the reaction of silylene, SiH2, generated by laser flash photolysis of phenylsilane, have been carried out to obtain rate constants for its bimolecular reaction with O-2. The reaction was studied in the gas phase over the pressure range 1-100 Torr in SF6 bath gas, at five temperatures in the range 297-600 K. The second order rate constants at 10 Torr were fitted to the Arrhenius equation: log(k/cm(3) molecule(-1) s(-1)) = (-11.08 +/- 0.04) + (1.57 +/- 0.32 kJ mol(-1))/RT ln10 The decrease in rate constant values with increasing temperature, although systematic is very small. The rate constants showed slight increases in value with pressure at each temperature, but this was scarcely beyond experimental uncertainty. From estimates of Lennard-Jones collision rates, this reaction is occurring at ca. 1 in 20 collisions, almost independent of pressure and temperature. Ab initio calculations at the G3 level backed further by multi-configurational (MC) SCF calculations, augmented by second order perturbation theory (MRMP2), support a mechanism in which the initial adduct, H2SiOO, formed in the triplet state (T), undergoes intersystem crossing to the more stable singlet state (S) prior to further low energy isomerisation processes leading, via a sequence of steps, ultimately to dissociation products of which the lowest energy pair are H2O + SiO. The decomposition of the intermediate cyclo-siladioxirane, via O-O bond fission, plays an important role in the overall process. The bottleneck for the overall process appears to be the T -> S process in H2SiOO. This process has a small spin orbit coupling matrix element, consistent with an estimate of its rate constant of 1 x 10(9) s(-1) obtained with the aid of RRKM theory. This interpretation preserves the idea that, as in its reactions in general, SiH2 initially reacts at the encounter rate with O-2. The low values for the secondary reaction barriers on the potential energy surface account for the lack of an observed pressure dependence. Some comparisons are drawn with the reactions of CH2 + O-2 and SiCl2 + O-2
BioMiCo:A supervised Bayesian model for inference of microbial community structure
Here, we describe a novel hierarchical model for Bayesian inference of microbial communities (BioMiCo). The model takes abundance data derived from environmental DNA, and models the composition of each sample by a two-level hierarchy of mixture distributions constrained by Dirichlet priors. BioMiCo is supervised, using known features for samples and appropriate prior constraints to overcome the challenges posed by many variables, sparse data, and large numbers of rare species. The model is trained on a portion of the data, where it learns how assemblages of species are mixed to form communities and how assemblages are related to the known features of each sample. Training yields a model that can predict the features of new samples. We used BioMiCo to build models for three serially sampled datasets and tested their predictive accuracy across different time points. The first model was trained to predict both body site (hand, mouth, and gut) and individual human host. It was able to reliably distinguish these features across different time points. The second was trained on vaginal microbiomes to predict both the Nugent score and individual human host. We found that women having normal and elevated Nugent scores had distinct microbiome structures that persisted over time, with additional structure within women having elevated scores. The third was trained for the purpose of assessing seasonal transitions in a coastal bacterial community. Application of this model to a high-resolution time series permitted us to track the rate and time of community succession and accurately predict known ecosystem-level events
Vibration Characteristics of the Rotating Dental Instrument
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66747/2/10.1177_00220345500290050801.pd
IMPALAS: Investigation of MagnetoPause Activity using Longitudinally-Aligned Satellitesâa mission concept proposed for the ESA M3 2020/2022 launch
The dayside magnetopause is the primary site of energy transfer from the solar wind into the magnetosphere, and modulates the activity observed within the magnetosphere itself. Specific plasma processes operating on the magnetopause include magnetic reconnection, generation of boundary waves, propagation of pressure-pulse induced deformations of the boundary, formation of boundary layers and generation of AlfvĂ©n waves and field-aligned current systems connecting the boundary to the inner magnetosphere and ionosphere. However, many of the details of these processes are not fully understood. For example, magnetic reconnection occurs sporadically, producing flux transfer events, but how and where these arise, and their importance to the global dynamics of the magnetospheric system remain unresolved. Many of these phenomena involve propagation across the magnetopause surface. Measurements at widely-spaced (Î Ë 5 RE) intervals along the direction of dayside terrestrial field lines at the magnetopause would be decisive in resolving these issues. We describe a mission carrying a fields and plasmas payload (including magnetometer, ion and electron spectrometer and energetic particle telescopes) on three identical spacecraft in synchronized orbits. These provide the needed separations, with each spacecraft skimming the dayside magnetopause and continuously sampling this boundary for many hours. The orbits are phased such that (i) all three spacecraft maintain common longitude and thus sample along the same magnetopause field line; (ii) the three spacecraft reach local midday when northern European ground-based facilities also lie near local midday, enabling simultaneous sampling of magnetopause field lines and their footprints
A model problem for conformal parameterizations of the Einstein constraint equations
We investigate the possibility that the conformal and conformal thin sandwich
(CTS) methods can be used to parameterize the set of solutions of the vacuum
Einstein constraint equations. To this end we develop a model problem obtained
by taking the quotient of certain symmetric data on conformally flat tori.
Specializing the model problem to a three-parameter family of conformal data we
observe a number of new phenomena for the conformal and CTS methods. Within
this family, we obtain a general existence theorem so long as the mean
curvature does not change sign. When the mean curvature changes sign, we find
that for certain data solutions exist if and only if the transverse-traceless
tensor is sufficiently small. When such solutions exist, there are generically
more than one. Moreover, the theory for mean curvatures changing sign is shown
to be extremely sensitive with respect to the value of a coupling constant in
the Einstein constraint equations.Comment: 40 pages, 4 figure
Child-computer interaction, ubiquitous technologies, and big data
In this forum we celebrate research that helps to successfully bring the benefits of computing technologies to children,
older adults, people with disabilities, and other populations that are often ignored in the design of mass-marketed products.
The childrenâs technology landscape is changing quickly. The ubiquity of interactive technologies means children can access them just about anytime, anywhere. At the same time, these technologies constantly collect data from and about children, bringing them into the age of big data, voluntarily or not. These developments have the potential to significantly change childrenâs relationship to technology and the long-term impact of technology use. To discuss these changes, the child-computer-interaction community held a special interest group (SIG) meeting during the CHI 2018 conference
Chemical telemetry of OH observed to measure interstellar magnetic fields
We present models for the chemistry in gas moving towards the ionization
front of an HII region. When it is far from the ionization front, the gas is
highly depleted of elements more massive than helium. However, as it approaches
the ionization front, ices are destroyed and species formed on the grain
surfaces are injected into the gas phase. Photodissociation removes gas phase
molecular species as the gas flows towards the ionization front. We identify
models for which the OH column densities are comparable to those measured in
observations undertaken to study the magnetic fields in star forming regions
and give results for the column densities of other species that should be
abundant if the observed OH arises through a combination of the liberation of
H2O from surfaces and photodissociation. They include CH3OH, H2CO, and H2S.
Observations of these other species may help establish the nature of the OH
spatial distribution in the clouds, which is important for the interpretation
of the magnetic field results.Comment: 11 pages, 2 figures, accepted by Astrophysics and Space Scienc
Stress response inside perturbed particle assemblies
The effect of structural disorder on the stress response inside three
dimensional particle assemblies is studied using computer simulations of
frictionless sphere packings. Upon applying a localised, perturbative force
within the packings, the resulting {\it Green's} function response is mapped
inside the different assemblies, thus providing an explicit view as to how the
imposed perturbation is transmitted through the packing. In weakly disordered
arrays, the resulting transmission of forces is of the double-peak variety, but
with peak widths scaling linearly with distance from the source of the
perturbation. This behaviour is consistent with an anisotropic elasticity
response profile. Increasing the disorder distorts the response function until
a single-peak response is obtained for fully disordered packings consistent
with an isotropic description.Comment: 8 pages, 7 figure captions To appear in Granular Matte
Multi-annual and multi-decadal evolution of sediment accretion in a saltmarsh of the French Atlantic coast: Implications for carbon sequestration
Coastal marshes offer natural solutions for adapting to and mitigating the effects of climate change and sea level rise. However, the resilience of the marsh physical system and, with it, the ecosystem services that it provides, is largely site specific. This calls for the increase in the spatial cover of coastal marsh studies in order to assess the controlling factors of marsh evolution, and their long-term carbon storage capacities. Here, we study the spatio-temporal variations in sedimentation rates and organic carbon (OC) sequestration capacity of the macrotidal minerogenic saltmarshes in Aiguillon Bay, belonging to one of the largest French coastal marshes. Supported by aerial photographs and satellite image analysis, we first show that saltmarshes of the Aiguillon Bay have prograded at very high rates, up to 14 m yrâ1 since 1950. Sediment accumulation rates (SAR) were estimated at both multi-annual to multi-decadal scales based on two approaches: (i) LiDAR-based digital elevation models from multiple acquisition dates (2010â2021); and (ii) depth profiles of 210Pb in excess and 137Cs in sediment cores collected along cross-shore transects in the saltmarshes. Long-term SAR range from 0.8 to 2.2 cm yrâ1 and are among the highest reported worldwide for equivalent systems. The positive accretion balance (accretion rate minus local sea-level rise rate) provides important clues on marsh resilience suggesting that the Aiguillon Bay is currently able to adapt to rising sea level. Despite relatively low organic carbon content (1.3â6.0%), high SAR leads to high carbon sequestration rates (99â345 gC mâ2 yrâ1; or a mean value of 2.5 Mg C haâ1 yrâ1). The isotopic signature of sediment OC reveals a significant and rapid decomposition of organic material in surface cores, while allochthonous sediment of marine origin dominates the signature of chemically-stable OC of marsh sediments. This implies that the carbon sequestration capacity of minerogenic saltmarshes, such as those of the Pertuis Charentais, also depends upon the wealth of adjacent coastal environments through high sediment supply and primary productivity.Evolution de l'identitĂ© patrimoniale des marais des Pertuis Charentais en rĂ©ponse Ă l'alĂ©a de submersion marin
Transport in rough self-affine fractures
Transport properties of three-dimensional self-affine rough fractures are
studied by means of an effective-medium analysis and numerical simulations
using the Lattice-Boltzmann method. The numerical results show that the
effective-medium approximation predicts the right scaling behavior of the
permeability and of the velocity fluctuations, in terms of the aperture of the
fracture, the roughness exponent and the characteristic length of the fracture
surfaces, in the limit of small separation between surfaces. The permeability
of the fractures is also investigated as a function of the normal and lateral
relative displacements between surfaces, and is shown that it can be bounded by
the permeability of two-dimensional fractures. The development of channel-like
structures in the velocity field is also numerically investigated for different
relative displacements between surfaces. Finally, the dispersion of tracer
particles in the velocity field of the fractures is investigated by analytic
and numerical methods. The asymptotic dominant role of the geometric
dispersion, due to velocity fluctuations and their spatial correlations, is
shown in the limit of very small separation between fracture surfaces.Comment: submitted to PR
- âŠ