3,582 research outputs found

    Day surgery in a teaching hospital: identifying barriers to productivity.

    Get PDF
    Introduction: Ambulatory surgery is a standard of care for many surgical procedures due to cost-effectiveness and benefits to patients including the reduced risk of contracting hospital infection by reducing the hospital stay. However, late cancellations can be costly. We examined the utilisation of the surgical day ward in our institution over a four-year period. Methods: A retrospective study of surgical day ward records from September 2007 to September 2011 in one institution. Parameters investigated included the number of planned admissions. Reasons for cancellations were also collected. Results: A total of 17,461 procedures were intended as a day ward admission during the study interval. There were 3,539 procedures that were cancelled (20.3%). The prevalent proportion of cancellations (n = 1,367) (38.6%) were due to patients not showing up for their procedures (7.8% of planned admissions); 1,188 (33.6%) patients were cancelled by the admissions office due to bed shortages, accounting for 6.8 % of planned admissions and 650 (18.4%) of cases were due to last minute cancellations by patients, accounting for 3.7% of all planned admission. The remaining 334 (9.4%) of cases were cancelled on medical grounds including patients who were considered unfit for the intended procedure, or anti-coagulations not appropriately ceased prior to surgery, accounting for 1.9% of all planned admissions. Conclusion: The cancellation rate in this study was high, mainly due to failure of patients to attend or signal their intentions, inadequate bed capacity and bed closure strategies. The ring fencing and protection of day beds and a more active patient management interaction would have had the greatest impact on increased efficiency

    Abundant Refractory Sulfur in Protoplanetary Disks

    Get PDF
    Sulfur is one of the most abundant elements in the Universe, with important roles in astro-, geo-, and biochemistry. Its main reservoirs in planet-forming disks have previously eluded detection: gaseous molecules only account for <1<1\,\% of total elemental sulfur, with the rest likely in either ices or refractory minerals. Mechanisms such as giant planets can filter out dust from gas accreting onto disk-hosting stars. For stars above 1.4 solar masses, this leaves a chemical signature on the stellar photosphere that can be used to determine the fraction of each element that is locked in dust. Here, we present an application of this method to sulfur, zinc, and sodium. We analyse the accretion-contaminated photospheres of a sample of young stars and find (89±8)(89\pm8)\,\% of elemental sulfur is in refractory form in their disks. The main carrier is much more refractory than water ice, consistent with sulfide minerals such as FeS

    IVF for premature ovarian failure: first reported births using oocytes donated from a twin sister

    Get PDF
    BACKGROUND: Premature ovarian failure (POF) remains a clinically challenging entity because in vitro fertilisation (IVF) with donor oocytes is currently the only treatment known to be effective. METHODS: A 33 year-old nulligravid patient with a normal karyotype was diagnosed with POF; she had a history of failed fertility treatments and had an elevated serum FSH (42 mIU/ml). Oocytes donated by her dizygotic twin sister were used for IVF. The donor had already completed a successful pregnancy herself and subsequently produced a total of 10 oocytes after a combined FSH/LH superovulation regime. These eggs were fertilised with sperm from the recipient\u27s husband via intracytoplasmic injection and two fresh embryos were transferred to the recipient on day three. RESULTS: A healthy twin pregnancy resulted from IVF; two boys were delivered by caesarean section at 39 weeks\u27 gestation. Additionally, four embryos were cryopreserved for the recipient\u27s future use. The sister-donor achieved another natural pregnancy six months after oocyte retrieval, resulting in a healthy singleton delivery. CONCLUSION: POF is believed to affect approximately 1% of reproductive age females, and POF patients with a sister who can be an oocyte donor for IVF are rare. Most such IVF patients will conceive from treatment using oocytes from an anonymous oocyte donor. This is the first report of births following sister-donor oocyte IVF in Ireland. Indeed, while sister-donor IVF has been successfully undertaken by IVF units elsewhere, this is the only known case where oocyte donation involved twin sisters. As with all types of donor gamete therapy, pre-treatment counselling is important in the circumstance of sister oocyte donation

    Fluid-structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness

    Get PDF
    BACKGROUND: Abdominal aortic aneurysm (AAA) is a prevalent disease which is of significant concern because of the morbidity associated with the continuing expansion of the abdominal aorta and its ultimate rupture. The transient interaction between blood flow and the wall contributes to wall stress which, if it exceeds the failure strength of the dilated arterial wall, will lead to aneurysm rupture. Utilizing a computational approach, the biomechanical environment of virtual AAAs can be evaluated to study the affects of asymmetry and wall thickness on this stress, two parameters that contribute to increased risk of aneurysm rupture. METHODS: Ten virtual aneurysm models were created with five different asymmetry parameters ranging from β = 0.2 to 1.0 and either a uniform or variable wall thickness to study the flow and wall dynamics by means of fully coupled fluid-structure interaction (FSI) analyses. The AAA wall was designed to have a (i) uniform 1.5 mm thickness or (ii) variable thickness ranging from 0.5 – 1.5 mm extruded normally from the boundary surface of the lumen. These models were meshed with linear hexahedral elements, imported into a commercial finite element code and analyzed under transient flow conditions. The method proposed was then compared with traditional computational solid stress techniques on the basis of peak wall stress predictions and cost of computational effort. RESULTS: The results provide quantitative predictions of flow patterns and wall mechanics as well as the effects of aneurysm asymmetry and wall thickness heterogeneity on the estimation of peak wall stress. These parameters affect the magnitude and distribution of Von Mises stresses; varying wall thickness increases the maximum Von Mises stress by 4 times its uniform thickness counterpart. A pre-peak systole retrograde flow was observed in the AAA sac for all models, which is due to the elastic energy stored in the compliant arterial wall and the expansion force of the artery during systole. CONCLUSION: Both wall thickness and geometry asymmetry affect the stress exhibited by a virtual AAA. Our results suggest that an asymmetric AAA with regional variations in wall thickness would be exposed to higher mechanical stresses and an increased risk of rupture than a more fusiform AAA with uniform wall thickness. Therefore, it is important to accurately reproduce vessel geometry and wall thickness in computational predictions of AAA biomechanics

    Polyubiquitin binding to ABIN1 is required to prevent autoimmunity

    Get PDF
    The protein ABIN1 possesses a polyubiquitin-binding domain homologous to that present in nuclear factor kappa B (NF-kappa B) essential modulator (NEMO), a component of the inhibitor of NF-kappa B (I kappa B) kinase (IKK) complex. To address the physiological significance of polyubiquitin binding, we generated knockin mice expressing the ABIN1[D485N] mutant instead of the wild-type (WT) protein. These mice developed all the hallmarks of autoimmunity, including spontaneous formation of germinal centers, isotype switching, and production of autoreactive antibodies. Autoimmunity was suppressed by crossing to MyD88(-/-) mice, demonstrating that toll-like receptor (TLR)-MyD88 signaling pathways are needed for the phenotype to develop. The B cells and myeloid cells of the ABIN1[D485N] mice showed enhanced activation of the protein kinases TAK, IKK-alpha/beta, c-Jun N-terminal kinases, and p38 alpha mitogen-activated protein kinase and produced more IL-6 and IL-12 than WT. The mutant B cells also proliferated more rapidly in response to TLR ligands. Our results indicate that the interaction of ABIN1 with polyubiquitin is required to limit the activation of TLR-MyD88 pathways and prevent autoimmunity

    Neo-Aristotelian Naturalism and the Evolutionary Objection: Rethinking the Relevance of Empirical Science

    Get PDF
    Neo-Aristotelian metaethical naturalism is a modern attempt at naturalizing ethics using ideas from Aristotle’s teleological metaphysics. Proponents of this view argue that moral virtue in human beings is an instance of natural goodness, a kind of goodness supposedly also found in the realm of non-human living things. Many critics question whether neo-Aristotelian naturalism is tenable in light of modern evolutionary biology. Two influential lines of objection have appealed to an evolutionary understanding of human nature and natural teleology to argue against this view. In this paper, I offer a reconstruction of these two seemingly different lines of objection as raising instances of the same dilemma, giving neo-Aristotelians a choice between contradicting our considered moral judgment and abandoning metaethical naturalism. I argue that resolving the dilemma requires showing a particular kind of continuity between the norms of moral virtue and norms that are necessary for understanding non-human living things. I also argue that in order to show such a continuity, neo-Aristotelians need to revise the relationship they adopt with empirical science and acknowledge that the latter is relevant to assessing their central commitments regarding living things. Finally, I argue that to move this debate forward, both neo-Aristotelians and their critics should pay attention to recent work on the concept of organism in evolutionary and developmental biology

    The Distribution of Fitness Effects of Beneficial Mutations in Pseudomonas aeruginosa

    Get PDF
    Understanding how beneficial mutations affect fitness is crucial to our understanding of adaptation by natural selection. Here, using adaptation to the antibiotic rifampicin in the opportunistic pathogen Pseudomonas aeruginosa as a model system, we investigate the underlying distribution of fitness effects of beneficial mutations on which natural selection acts. Consistent with theory, the effects of beneficial mutations are exponentially distributed where the fitness of the wild type is moderate to high. However, when the fitness of the wild type is low, the data no longer follow an exponential distribution, because many beneficial mutations have large effects on fitness. There is no existing population genetic theory to explain this bias towards mutations of large effects, but it can be readily explained by the underlying biochemistry of rifampicin–RNA polymerase interactions. These results demonstrate the limitations of current population genetic theory for predicting adaptation to severe sources of stress, such as antibiotics, and they highlight the utility of integrating statistical and biophysical approaches to adaptation

    Chemical Habitability: Supply and Retention of Life's Essential Elements During Planet Formation

    Get PDF
    This is the final version. Available from the Astronomical Society of the Pacific via the DOI in this recordASP Conference Series Vol. 534, Proceedings of a conference held 10-15 April 2023, Kyoto, JapanCarbon, Hydrogen, Nitrogen, Oxygen, Phosphorus and Sulfur (CHNOPS) play key roles in the origin and proliferation of life on Earth. Given the universality of physics and chemistry, not least the ubiquity of water as a solvent and carbon as a backbone of complex molecules, CHNOPS are likely crucial to most habitable worlds. To help guide and inform the search for potentially habitable and ultimately inhabited environments, we begin by summarizing the CHNOPS budget of various reservoirs on Earth, their role in shaping our biosphere, and their origins in the Solar Nebula. We then synthesize our current understanding of how these elements behave and are distributed in diverse astrophysical settings, tracing their journeys from synthesis in dying stars to molecular clouds, protoplanetary settings, and ultimately temperate rocky planets around main sequence stars. We end by identifying key branching points during this journey, highlighting instances where a forming planets’ distribution of CHNOPS can be altered dramatically, and speculating about the consequences for the chemical habitability of these worlds.NASANational Science Foundation (NSF

    The TW Hya Rosetta Stone Project IV: A Hydrocarbon-rich Disk Atmosphere

    Get PDF
    Connecting the composition of planet-forming disks with that of gas giant exoplanet atmospheres, in particular through C/O ratios, is one of the key goals of disk chemistry. Small hydrocarbons like C2H and C3H2 have been identified as tracers of C/O, as they form abundantly under high C/O conditions. We present resolved c–C3H2 observations from the TW Hya Rosetta Stone Project, a program designed to map the chemistry of common molecules at 15–20 au resolution in the TW Hya disk. Augmented by archival data, these observations comprise the most extensive multi-line set for disks of both ortho and para spin isomers spanning a wide range of energies, Eu = 29–97 K. We find the ortho-to-para ratio of c–C3H2 is consistent with 3 throughout extent of the emission, and the total abundance of both c–C3H2 isomers is (7.5–10) × 10−11 per H atom, or 1%–10% of the previously published C2H abundance in the same source. We find c–C3H2 comes from a layer near the surface that extends no deeper than z/r = 0.25. Our observations are consistent with substantial radial variation in gas-phase C/O in TW Hya, with a sharp increase outside ~30 au. Even if we are not directly tracing the midplane, if planets accrete from the surface via, e.g., meridional flows, then such a change should be imprinted on forming planets. Perhaps interestingly, the HR 8799 planetary system also shows an increasing gradient in its giant planets' atmospheric C/O ratios. While these stars are quite different, hydrocarbon rings in disks are common, and therefore our results are consistent with the young planets of HR 8799 still bearing the imprint of their parent disk's volatile chemistry

    The TW Hya Rosetta Stone Project. II. Spatially Resolved Emission of Formaldehyde Hints at Low-temperature Gas-phase Formation

    Get PDF
    Formaldehyde (H2CO) is an important precursor to organics like methanol (CH3OH). It is important to understand the conditions that produce H2CO and prebiotic molecules during star and planet formation. H2CO possesses both gas-phase and solid-state formation pathways, involving either UV-produced radical precursors or CO ice and cold (lesssim20 K) dust grains. To understand which pathway dominates, gaseous H2CO's ortho-to-para ratio (OPR) has been used as a probe, with a value of 3 indicating "warm" conditions and <3 linked to cold formation in the solid state. We present spatially resolved Atacama Large Millimeter/submillimeter Array observations of multiple ortho- and para-H2CO transitions in the TW Hya protoplanetary disk to test H2CO formation theories during planet formation. We find disk-averaged rotational temperatures and column densities of 33 ± 2 K, (1.1 ± 0.1) × 1012 cm−2 and 25 ± 2 K, (4.4 ± 0.3) × 1011 cm−2 for ortho- and para-H2CO, respectively, and an OPR of 2.49 ± 0.23. A radially resolved analysis shows that the observed H2CO emits mostly at rotational temperatures of 30–40 K, corresponding to a layer with z/R ≥ 0.25. The OPR is consistent with 3 within 60 au, the extent of the pebble disk, and decreases beyond 60 au to 2.0 ± 0.5. The latter corresponds to a spin temperature of 12 K, well below the rotational temperature. The combination of relatively uniform emitting conditions, a radial gradient in the OPR, and recent laboratory experiments and theory on OPR ratios after sublimation, led us to speculate that gas-phase formation is responsible for the observed H2CO across the TW Hya disk
    corecore