20 research outputs found
Resonance Superfluidity: Renormalization of Resonance Scattering Theory
We derive a theory of superfluidity for a dilute Fermi gas that is valid when
scattering resonances are present. The treatment of a resonance in many-body
atomic physics requires a novel mean-field approach starting from an
unconventional microscopic Hamiltonian. The mean-field equations incorporate
the microscopic scattering physics, and the solutions to these equations
reproduce the energy-dependent scattering properties. This theory describes the
high- behavior of the system, and predicts a value of which is a
significant fraction of the Fermi temperature. It is shown that this novel
mean-field approach does not break down for typical experimental circumstances,
even at detunings close to resonance. As an example of the application of our
theory we investigate the feasibility for achieving superfluidity in an
ultracold gas of fermionic Li.Comment: 15 pages, 10 figure
Many particle entanglement in two-component Bose-Einstein Condensates
We investigate schemes to dynamically create many particle entangled states
of a two component Bose-Einstein condensate in a very short time proportional
to 1/N where is the number of condensate particles. For small we
compare exact numerical calculations with analytical semiclassical estimates
and find very good agreement for . We also estimate the effect of
decoherence on our scheme, study possible scenarios for measuring the entangled
states, and investigate experimental imperfections.Comment: 12 pages, 8 figure
Use of dispersion modelling for Environmental Impact Assessment of biological air pollution from composting: Progress, problems and prospects
© 2017 The Authors With the increase in composting as a sustainable waste management option, biological air pollution (bioaerosols) from composting facilities have become a cause of increasing concern due to their potential health impacts. Estimating community exposure to bioaerosols is problematic due to limitations in current monitoring methods. Atmospheric dispersion modelling can be used to estimate exposure concentrations, however several issues arise from the lack of appropriate bioaerosol data to use as inputs into models, and the complexity of the emission sources at composting facilities. This paper analyses current progress in using dispersion models for bioaerosols, examines the remaining problems and provides recommendations for future prospects in this area. A key finding is the urgent need for guidance for model users to ensure consistent bioaerosol modelling practices
Ligand interactions of the Coprinopsis cinerea galectins
The basidiomycete Coprinopsis cinerea (Coprinus cinereus) expresses two fruiting body-specific isolectins (CGL1 and CGL2) that belong to the family of galectins. Understanding the role of these β-galactoside binding lectins is still in the beginning. Even though the prerequisites for substrate binding are well understood, it is not known how discrimination between potential substrates is achieved and what kind of influence this has on the function in a distinct cellular context. Precise knowledge of the expression of galectins and their ligands will aid in elucidating their function. In Coprinopsis, the developmentally regulated ligands for galectins co-localise with galectin expression in the veil surrounding the developing primordium and the outer cells of the young stipe. In addition, galectin ligands are observed in the hymenium. The subcellular localisation of the galectin ligands suggests these to be present in cellular compartments distinct from galectin transport. The sensitivity of the in situ interactions with exogenous galectin towards detergents and organic solvents infers that these ligands are lipid-borne. Accordingly, lipid fractions from primordia are shown to contain galectin-binding compounds. Based on these results and the determined binding specificity towards substituted β-galactosides we hypothesise that β-galactoside-containing lipids (basidiolipids) found in mushrooms are physiological ligands for the galectins in C. cinerea