4,260 research outputs found
Geometrically necessary dislocation densities in olivine obtained using high-angular resolution electron backscatter diffraction
© 2016 The AuthorsDislocations in geological minerals are fundamental to the creep processes that control large-scale geodynamic phenomena. However, techniques to quantify their densities, distributions, and types over critical subgrain to polycrystal length scales are limited. The recent advent of high-angular resolution electron backscatter diffraction (HR-EBSD), based on diffraction pattern cross-correlation, offers a powerful new approach that has been utilised to analyse dislocation densities in the materials sciences. In particular, HR-EBSD yields significantly better angular resolution (<0.01°) than conventional EBSD (~0.5°), allowing very low dislocation densities to be analysed. We develop the application of HR-EBSD to olivine, the dominant mineral in Earths upper mantle by testing (1) different inversion methods for estimating geometrically necessary dislocation (GND) densities, (2) the sensitivity of the method under a range of data acquisition settings, and (3) the ability of the technique to resolve a variety of olivine dislocation structures. The relatively low crystal symmetry (orthorhombic) and few slip systems in olivine result in well constrained GND density estimates. The GND density noise floor is inversely proportional to map step size, such that datasets can be optimised for analysing either short wavelength, high density structures (e.g. subgrain boundaries) or long wavelength, low amplitude orientation gradients. Comparison to conventional images of decorated dislocations demonstrates that HR-EBSD can characterise the dislocation distribution and reveal additional structure not captured by the decoration technique. HR-EBSD therefore provides a highly effective method for analysing dislocations in olivine and determining their role in accommodating macroscopic deformation
A new map-making algorithm for CMB polarisation experiments
With the temperature power spectrum of the cosmic microwave background (CMB)
at least four orders of magnitude larger than the B-mode polarisation power
spectrum, any instrumental imperfections that couple temperature to
polarisation must be carefully controlled and/or removed. Here we present two
new map-making algorithms that can create polarisation maps that are clean of
temperature-to-polarisation leakage systematics due to differential gain and
pointing between a detector pair. Where a half wave plate is used, we show that
the spin-2 systematic due to differential ellipticity can also by removed using
our algorithms. The algorithms require no prior knowledge of the imperfections
or temperature sky to remove the temperature leakage. Instead, they calculate
the systematic and polarisation maps in one step directly from the time ordered
data (TOD). The first algorithm is designed to work with scan strategies that
have a good range of crossing angles for each map pixel and the second for scan
strategies that have a limited range of crossing angles. The first algorithm
can also be used to identify if systematic errors that have a particular spin
are present in a TOD. We demonstrate the use of both algorithms and the ability
to identify systematics with simulations of TOD with realistic scan strategies
and instrumental noise.Comment: 11 pages, 6 figure
Optimal scan strategies for future CMB satellite experiments
The B-mode polarisation power spectrum in the Cosmic Microwave Background
(CMB) is about four orders of magnitude fainter than the CMB temperature power
spectrum. Any instrumental imperfections that couple temperature fluctuations
to B-mode polarisation must therefore be carefully controlled and/or removed.
We investigate the role that a scan strategy can have in mitigating certain
common systematics by averaging systematic errors down with many crossing
angles. We present approximate analytic forms for the error on the recovered
B-mode power spectrum that would result from differential gain, differential
pointing and differential ellipticity for the case where two detector pairs are
used in a polarisation experiment. We use these analytic predictions to search
the parameter space of common satellite scan strategies in order to identify
those features of a scan strategy that have most impact in mitigating
systematic effects. As an example we go on to identify a scan strategy suitable
for the CMB satellite proposed for the ESA M5 call. considering the practical
considerations of fuel requirement, data rate and the relative orientation of
the telescope to the earth. Having chosen a scan strategy we then go on to
investigate the suitability of the scan strategy.Comment: 21 pages, 11 figures, Comments welcom
Removing beam asymmetry bias in precision CMB temperature and polarisation experiments
Asymmetric beams can create significant bias in estimates of the power
spectra from CMB experiments. With the temperature power spectrum many orders
of magnitude stronger than the B-mode power spectrum any systematic error that
couples the two must be carefully controlled and/or removed. Here, we derive
unbiased estimators for the CMB temperature and polarisation power spectra
taking into account general beams and general scan strategies. A simple
consequence of asymmetric beams is that, even with an ideal scan strategy where
every sky pixel is seen at every orientation, there will be residual coupling
from temperature power to B-mode power if the orientation of the beam asymmetry
is not aligned with the orientation of the co-polarisation. We test our
correction algorithm on simulations of two temperature-only experiments and
demonstrate that it is unbiased. The simulated experiments use realistic scan
strategies, noise levels and highly asymmetric beams. We also develop a
map-making algorithm that is capable of removing beam asymmetry bias at the map
level. We demonstrate its implementation using simulations and show that it is
capable of accurately correcting both temperature and polarisation maps for all
of the effects of beam asymmetry including the effects of temperature to
polarisation leakage.Comment: 18 pages, 9 figure
Prioritising the care of critically ill children: a pilot study using SCREEN reduces clinic waiting times
Objective In low-resource settings, childhood mortality secondary to delays in triage and treatment remains high. This paper seeks to evaluate the impact of the novel Sick Children Require Emergency Evaluation Now (SCREEN) tool on the waiting times of critically ill children who present for care to primary healthcare clinics in Cape Town, South Africa. Methods We used a pre/postevaluation study design to calculate the median waiting times of all children who presented to four randomly chosen clinics for 5 days before, and 5 days after, the implementation of SCREEN. Findings The SCREEN programme resulted in statistical and clinically significant reductions in waiting times for children with critical illness to see a professional nurse (2 hours 45 min to 1 hour 12 min; p<0.001). There was also a statistically significant reduction in the proportion of children who left without being seen by a professional nurse (25.8% to 18.48%; p<0.001). Conclusions SCREEN is a novel programme that uses readily available laypersons, trained to make a subjective assessment of children arriving at primary healthcare centres, and provides a low cost, simple methodology to prioritise children and reduce waiting times in low-resource healthcare clinics
Purpose-orientated stocking of procedure trolleys saves time in busy emergency centres
Background. Inefficient storage and sourcing of routinely required consumables located on procedure trolleys result in time wasted when preparing for common procedures in emergency centres (ECs), contributing to poor efficiency and quality of care.Objectives. We designed a novel purpose-orientated procedure trolley and evaluated its impact on time spent on procedure preparation and efficiency.Methods. In an urban EC, eight participants were measured each day over 24 days, once using the standard setup and once using the modified procedure setup. During each simulation, efficiency markers were assessed (time spent on procedure preparation, steps taken, stops made, and time spent opening drawers to locate required items).Results. The mean (standard deviation) time required to collect the required items for intravenous cannulation and blood sampling from the purpose-orientated trolley was 22.7 (3.66) seconds, compared with 49.2 (15.45) seconds using the standard trolley. There was a significant difference between the two trolleys in mean collection time (p<0.0005) and in all the other categories: steps taken, stops made and drawer opening (p<0.0005).Conclusions. In our setting, stocking procedure trolleys in a purpose-orientated manner has the potential to improve efficiency by reducing time spent on procedure preparation
Removing beam asymmetry bias in precision CMB temperature and polarisation experiments
Asymmetric beams can create significant bias in estimates of the power
spectra from CMB experiments. With the temperature power spectrum many orders
of magnitude stronger than the B-mode power spectrum any systematic error that
couples the two must be carefully controlled and/or removed. Here, we derive
unbiased estimators for the CMB temperature and polarisation power spectra
taking into account general beams and general scan strategies. A simple
consequence of asymmetric beams is that, even with an ideal scan strategy where
every sky pixel is seen at every orientation, there will be residual coupling
from temperature power to B-mode power if the orientation of the beam asymmetry
is not aligned with the orientation of the co-polarisation. We test our
correction algorithm on simulations of two temperature-only experiments and
demonstrate that it is unbiased. The simulated experiments use realistic scan
strategies, noise levels and highly asymmetric beams. We also develop a
map-making algorithm that is capable of removing beam asymmetry bias at the map
level. We demonstrate its implementation using simulations and show that it is
capable of accurately correcting both temperature and polarisation maps for all
of the effects of beam asymmetry including the effects of temperature to
polarisation leakage.Comment: 18 pages, 9 figure
Cohort profile: the avon longitudinal study of parents and children: ALSPAC mothers cohort
The Avon Longitudinal Study of Children and Parents (ALSPAC) was established to understand how genetic and environmental characteristics influence health and development in parents and children. All pregnant women resident in a defined area in the South West of England, with an expected date of delivery between 1st April 1991 and 31st December 1992, were eligible and 13 761 women (contributing 13 867 pregnancies) were recruited. These women have been followed over the last 19–22 years and have completed up to 20 questionnaires, have had detailed data abstracted from their medical records and have information on any cancer diagnoses and deaths through record linkage. A follow-up assessment was completed 17–18 years postnatal at which anthropometry, blood pressure, fat, lean and bone mass and carotid intima media thickness were assessed, and a fasting blood sample taken. The second follow-up clinic, which additionally measures cognitive function, physical capability, physical activity (with accelerometer) and wrist bone architecture, is underway and two further assessments with similar measurements will take place over the next 5 years. There is a detailed biobank that includes DNA, with genome-wide data available on >10 000, stored serum and plasma taken repeatedly since pregnancy and other samples; a wide range of data on completed biospecimen assays are available. Details of how to access these data are provided in this cohort profile
- …