406 research outputs found

    Increases in invasive melanoma in England, 1979-2006, by anatomical site

    Get PDF
    BACKGROUND: National melanoma incidence trends with details of anatomical site have not been previously described for England. OBJECTIVES: To describe site-specific trends in cutaneous melanoma for England as a whole during the last three decades. METHODS: Anonymized data, 1979–2006, were obtained from national cancer registrations of all patients in England up to age 89 years with incident primary invasive cutaneous melanomas (n = 124 055). Sex-specific age-standardized incidence rates and average annual percentage change in rates were calculated for each broad anatomical site. RESULTS: Overall incidence rates of cutaneous melanoma in England, 1979–2006, were 81 and 100 per million, in males and females, respectively. Site-specific rates were consistently highest on the lower limbs in females followed by the trunk in males. Greatest annual increases occurred on the trunk in both sexes over 45 years (males 9Β·9%, females 6Β·8%), then upper limbs (males 8Β·7%, females 6Β·8%). Incidence trends in males relative to females varied little across sites apart from a more rapid rise in head/neck melanomas in males than in females after the 1980s. CONCLUSIONS: Invasive melanoma rates continue to rise in England, particularly on the trunk and arms, and in males on the head/neck. The steeper increases in melanoma rates among males are consistent with their greater sun exposure and poorer compliance with sun protection measures than females

    Dynamic inundation simulation of storm water interaction between sewer system and overland flows

    Get PDF
    Copyright Β© 2002 Taylor & FrancisThis is the Author's Accepted Manuscript of an article published in the Journal of the Chinese Institute of Engineers (2002), available online at: http://www.tandfonline.com/10.1080/02533839.2002.9670691An improved urban inundation model, coupling a 2D non‐inertia overland flow model with a storm water management model, is adopted to simulate inundation in urban areas. The model computes, not only the overland runoff and the water overflow through manholes where surface runoff exceeds the capacity of storm sewers, but also the bidirectional flow interactions between sewers and overland runoff. The model was verified by a typhoon event in Nov. 2000, which resulted in serious inundation in the Mucha area of Taipei City. The result shows that the present model indeed improves simulation accuracy over the earlier model, and can be used to provide a more reliable flood mitigation design

    Extreme multi-basin flooding linked with extra-tropical cyclones

    Get PDF
    © 2017 The Author(s). Published by IOP Publishing Ltd. Fluvial floods are typically investigated as 'events' at the single basin-scale, hence flood management authorities may underestimate the threat of flooding across multiple basins driven by large-scale and nearly concurrent atmospheric event(s). We pilot a national-scale statistical analysis of the spatio-temporal characteristics of extreme multi-basin flooding (MBF) episodes, using peak river flow data for 260 basins in Great Britain (1975-2014), a sentinel region for storms impacting northwest and central Europe. During the most widespread MBF episode, 108 basins (∼46% of the study area) recorded annual maximum (AMAX) discharge within a 16 day window. Such episodes are associated with persistent cyclonic and westerly atmospheric circulations, atmospheric rivers, and precipitation falling onto previously saturated ground, leading to hydrological response time

    Coordination of Cell Polarity during Xenopus Gastrulation

    Get PDF
    Cell polarity is an essential feature of animal cells contributing to morphogenesis. During Xenopus gastrulation, it is known that chordamesoderm cells are polarized and intercalate each other allowing anterior-posterior elongation of the embryo proper by convergent extension (CE). Although it is well known that the cellular protrusions at both ends of polarized cells exert tractive force for intercalation and that PCP pathway is known to be essential for the cell polarity, little is known about what triggers the cell polarization and what the polarization causes to control intracellular events enabling the intercalation that leads to the CE. In our research, we used EB3 (end-binding 3), a member of +TIPs that bind to the plus end of microtubule (MT), to visualize the intracellular polarity of chordamesoderm cells during CE to investigate the trigger of the establishment of cell polarity. We found that EB3 movement is polarized in chordamesoderm cells and that the notochord-somite tissue boundary plays an essential role in generating the cell polarity. This polarity was generated before the change of cell morphology and the polarized movement of EB3 in chordamesoderm cells was also observed near the boundary between the chordamesoderm tissue and naΓ―ve ectoderm tissue or lateral mesoderm tissues induced by a low concentration of nodal mRNA. These suggest that definitive tissue separation established by the distinct levels of nodal signaling is essential for the chordamesodermal cells to acquire mediolateral cell polarity

    Deficiency in origin licensing proteins impairs cilia formation: implications for the aetiology of meier-gorlin syndrome

    Get PDF
    Mutations in ORC1, ORC4, ORC6, CDT1, and CDC6, which encode proteins required for DNA replication origin licensing, cause Meier-Gorlin syndrome (MGS), a disorder conferring microcephaly, primordial dwarfism, underdeveloped ears, and skeletal abnormalities. Mutations in ATR, which also functions during replication, can cause Seckel syndrome, a clinically related disorder. These findings suggest that impaired DNA replication could underlie the developmental defects characteristic of these disorders. Here, we show that although origin licensing capacity is impaired in all patient cells with mutations in origin licensing component proteins, this does not correlate with the rate of progression through S phase. Thus, the replicative capacity in MGS patient cells does not correlate with clinical manifestation. However, ORC1-deficient cells from MGS patients and siRNA-mediated depletion of origin licensing proteins also have impaired centrosome and centriole copy number. As a novel and unexpected finding, we show that they also display a striking defect in the rate of formation of primary cilia. We demonstrate that this impacts sonic hedgehog signalling in ORC1-deficient primary fibroblasts. Additionally, reduced growth factor-dependent signaling via primary cilia affects the kinetics of cell cycle progression following cell cycle exit and re-entry, highlighting an unexpected mechanism whereby origin licensing components can influence cell cycle progression. Finally, using a cell-based model, we show that defects in cilia function impair chondroinduction. Our findings raise the possibility that a reduced efficiency in forming cilia could contribute to the clinical features of MGS, particularly the bone development abnormalities, and could provide a new dimension for considering developmental impacts of licensing deficiency

    Wnt5a Regulates Ventral Midbrain Morphogenesis and the Development of A9–A10 Dopaminergic Cells In Vivo

    Get PDF
    Wnt5a is a morphogen that activates the Wnt/planar cell polarity (PCP) pathway and serves multiple functions during development. PCP signaling controls the orientation of cells within an epithelial plane as well as convergent extension (CE) movements. Wnt5a was previously reported to promote differentiation of A9–10 dopaminergic (DA) precursors in vitro. However, the signaling mechanism in DA cells and the function of Wnt5a during midbrain development in vivo remains unclear. We hereby report that Wnt5a activated the GTPase Rac1 in DA cells and that Rac1 inhibitors blocked the Wnt5a-induced DA neuron differentiation of ventral midbrain (VM) precursor cultures, linking Wnt5a-induced differentiation with a known effector of Wnt/PCP signaling. In vivo, Wnt5a was expressed throughout the VM at embryonic day (E)9.5, and was restricted to the VM floor and basal plate by E11.5–E13.5. Analysis of Wnt5aβˆ’/βˆ’ mice revealed a transient increase in progenitor proliferation at E11.5, and a precociously induced NR4A2+ (Nurr1) precursor pool at E12.5. The excess NR4A2+ precursors remained undifferentiated until E14.5, when a transient 25% increase in DA neurons was detected. Wnt5aβˆ’/βˆ’ mice also displayed a defect in (mid)brain morphogenesis, including an impairment in midbrain elongation and a rounded ventricular cavity. Interestingly, these alterations affected mostly cells in the DA lineage. The ventral Sonic hedgehog-expressing domain was broadened and flattened, a typical CE phenotype, and the domains occupied by Ngn2+ DA progenitors, NR4A2+ DA precursors and TH+ DA neurons were rostrocaudally reduced and laterally expanded. In summary, we hereby describe a Wnt5a regulation of Wnt/PCP signaling in the DA lineage and provide evidence for multiple functions of Wnt5a in the VM in vivo, including the regulation of VM morphogenesis, DA progenitor cell division, and differentiation of NR4A2+ DA precursors

    Murine Dishevelled 3 Functions in Redundant Pathways with Dishevelled 1 and 2 in Normal Cardiac Outflow Tract, Cochlea, and Neural Tube Development

    Get PDF
    Dishevelled (Dvl) proteins are important signaling components of both the canonical Ξ²-catenin/Wnt pathway, which controls cell proliferation and patterning, and the planar cell polarity (PCP) pathway, which coordinates cell polarity within a sheet of cells and also directs convergent extension cell (CE) movements that produce narrowing and elongation of the tissue. Three mammalian Dvl genes have been identified and the developmental roles of Dvl1 and Dvl2 were previously determined. Here, we identify the functions of Dvl3 in development and provide evidence of functional redundancy among the three murine Dvls. Dvl3βˆ’/βˆ’ mice died perinatally with cardiac outflow tract abnormalities, including double outlet right ventricle and persistent truncus arteriosis. These mutants also displayed a misorientated stereocilia in the organ of Corti, a phenotype that was enhanced with the additional loss of a single allele of the PCP component Vangl2/Ltap (LtapLp/+). Although neurulation appeared normal in both Dvl3βˆ’/βˆ’ and LtapLp/+ mutants, Dvl3+/βˆ’;LtapLp/+ combined mutants displayed incomplete neural tube closure. Importantly, we show that many of the roles of Dvl3 are also shared by Dvl1 and Dvl2. More severe phenotypes were observed in Dvl3 mutants with the deficiency of another Dvl, and increasing Dvl dosage genetically with Dvl transgenes demonstrated the ability of Dvls to compensate for each other to enable normal development. Interestingly, global canonical Wnt signaling appeared largely unaffected in the double Dvl mutants, suggesting that low Dvl levels are sufficient for functional canonical Wnt signals. In summary, we demonstrate that Dvl3 is required for cardiac outflow tract development and describe its importance in the PCP pathway during neurulation and cochlea development. Finally, we establish several developmental processes in which the three Dvls are functionally redundant

    Modulation of the Ξ²-Catenin Signaling Pathway by the Dishevelled-Associated Protein Hipk1

    Get PDF
    BACKGROUND:Wnts are evolutionarily conserved ligands that signal through beta-catenin-dependent and beta-catenin-independent pathways to regulate cell fate, proliferation, polarity, and movements during vertebrate development. Dishevelled (Dsh/Dvl) is a multi-domain scaffold protein required for virtually all known Wnt signaling activities, raising interest in the identification and functions of Dsh-associated proteins. METHODOLOGY:We conducted a yeast-2-hybrid screen using an N-terminal fragment of Dsh, resulting in isolation of the Xenopus laevis ortholog of Hipk1. Interaction between the Dsh and Hipk1 proteins was confirmed by co-immunoprecipitation assays and mass spectrometry, and further experiments suggest that Hipk1 also complexes with the transcription factor Tcf3. Supporting a nuclear function during X. laevis development, Myc-tagged Hipk1 localizes primarily to the nucleus in animal cap explants, and the endogenous transcript is strongly expressed during gastrula and neurula stages. Experimental manipulations of Hipk1 levels indicate that Hipk1 can repress Wnt/beta-catenin target gene activation, as demonstrated by beta-catenin reporter assays in human embryonic kidney cells and by indicators of dorsal specification in X. laevis embryos at the late blastula stage. In addition, a subset of Wnt-responsive genes subsequently requires Hipk1 for activation in the involuting mesoderm during gastrulation. Moreover, either over-expression or knock-down of Hipk1 leads to perturbed convergent extension cell movements involved in both gastrulation and neural tube closure. CONCLUSIONS:These results suggest that Hipk1 contributes in a complex fashion to Dsh-dependent signaling activities during early vertebrate development. This includes regulating the transcription of Wnt/beta-catenin target genes in the nucleus, possibly in both repressive and activating ways under changing developmental contexts. This regulation is required to modulate gene expression and cell movements that are essential for gastrulation

    Is relatively young age within a school year a risk factor for mental health problems and poor school performance? A population-based cross-sectional study of adolescents in Oslo, Norway

    Get PDF
    BACKGROUND: Several studies have shown that children who are relatively young within a school year are at greater risk for poorer school performance compared with their older peers. One study also reported that relative age within a school year is an independent risk factor for emotional and behavioral problems. The objective of this study was to test the hypothesis that relatively younger adolescents in the multiethnic population of Oslo have poorer school performance and more mental health problems than their relatively older classmates within the same school year. METHODS: This population-based cross-sectional study included all 10(th)-grade pupils enrolled in 2000 and 2001 in the city of Oslo. The participation rate was 88%. Of the 6,752 pupils in the study sample, 25% had a non-Norwegian background. Mental health problems were quantified using the abbreviated versions of Symptom Check List-25 (SCL-10) and the Strength and Difficulties Questionnaire (SDQ). Information on school performances and mental health problems were self-reported. We controlled for confounding factors including parental educational level, social support, gender, and ethnicity. RESULTS: The youngest one-third of pupils had significantly lower average school grades than the middle one-third and oldest one-third of their classmates (p < 0.001). Of the mental health problems identified in the questionnaires, the groups differed only on peer problems; the youngest one-third reported significantly more problems than the middle and oldest groups (p < 0.05). Age within a school year and gender showed significant interactions with total SDQ score, SDQ peer problems score, SDQ pro social score, and SCL-10 score. After stratifying for gender, the peer problem scores differed significantly between age groups only among boys. The SCL-10 score was significant, but only in girls and in the opposite direction to that expected, with the oldest pupils having significantly higher scores than the other two groups (p < 0.05). CONCLUSION: In adolescents from a multicultural city in Norway, relative age within a school year significantly influenced academic performance. In contrast to data from Great Britain, relative age within a school year was not an important risk factor for mental health problems in adolescents in Oslo
    • …
    corecore