21,078 research outputs found
Possible application of remote-sensing techniques and satellite communications for earthquake studies
Passive and active remote sensing techniques used with satellite communication for earthquake studie
Design for a space molecular sink simulator
Space molecular sink vacuum syste
Observation of Single Transits in Supercooled Monatomic Liquids
A transit is the motion of a system from one many-particle potential energy
valley to another. We report the observation of transits in molecular dynamics
(MD) calculations of supercooled liquid argon and sodium. Each transit is a
correlated simultaneous shift in the equilibrium positions of a small local
group of particles, as revealed in the fluctuating graphs of the particle
coordinates versus time. This is the first reported direct observation of
transit motion in a monatomic liquid in thermal equilibrium. We found transits
involving 2 to 11 particles, having mean shift in equilibrium position on the
order of 0.4 R_1 in argon and 0.25 R_1 in sodium, where R_1 is the nearest
neighbor distance. The time it takes for a transit to occur is approximately
one mean vibrational period, confirming that transits are fast.Comment: 19 pages, 8 figure
An \emph{ab initio} method for locating characteristic potential energy minima of liquids
It is possible in principle to probe the many--atom potential surface using
density functional theory (DFT). This will allow us to apply DFT to the
Hamiltonian formulation of atomic motion in monatomic liquids [\textit{Phys.
Rev. E} {\bf 56}, 4179 (1997)]. For a monatomic system, analysis of the
potential surface is facilitated by the random and symmetric classification of
potential energy valleys. Since the random valleys are numerically dominant and
uniform in their macroscopic potential properties, only a few quenches are
necessary to establish these properties. Here we describe an efficient
technique for doing this. Quenches are done from easily generated "stochastic"
configurations, in which the nuclei are distributed uniformly within a
constraint limiting the closeness of approach. For metallic Na with atomic pair
potential interactions, it is shown that quenches from stochastic
configurations and quenches from equilibrium liquid Molecular Dynamics (MD)
configurations produce statistically identical distributions of the structural
potential energy. Again for metallic Na, it is shown that DFT quenches from
stochastic configurations provide the parameters which calibrate the
Hamiltonian. A statistical mechanical analysis shows how the underlying
potential properties can be extracted from the distributions found in quenches
from stochastic configurations
Efficient Universal Noiseless Source Codes
Although the existence of universal noiseless variable-rate codes for the class of discrete stationary ergodic sources has previously been established, very few practical universal encoding methods are available. Efficient implementable universal source coding techniques are discussed in this paper. Results are presented on source codes for which a small value of the maximum redundancy is achieved with a relatively short block length. A constructive proof of the existence of universal noiseless codes for discrete stationary sources is first presented. The proof is shown to provide a method for obtaining efficient universal noiseless variable-rate codes for various classes of sources. For memoryless sources, upper and lower bounds are obtained for the minimax redundancy as a function of the block length of the code. Several techniques for constructing universal noiseless source codes for memoryless sources are presented and their redundancies are compared with the bounds. Consideration is given to possible applications to data compression for certain nonstationary sources
Adiabatic and Non-Adiabatic Contributions to the Free Energy from the Electron-Phonon Interaction for Na, K, Al, and Pb
We calculate the adiabatic contributions to the free energy due to the
electron--phonon interaction at intermediate temperatures, for the elemental metals Na, K, Al, and Pb. Using our
previously published results for the nonadiabatic contributions we show that
the adiabatic contribution, which is proportional to at low
temperatures and goes as at high temperatures, dominates the
nonadiabatic contribution for temperatures above a cross--over temperature,
, which is between 0.5 and 0.8 , where is the melting
temperature of the metal. The nonadiabatic contribution falls as for
temperatures roughly above the average phonon frequency.Comment: Updated versio
DichroMatch: a website for similarity searching of circular dichroism spectra
Circular dichroism (CD) spectroscopy is a widely used method for examining the structure, folding and conformational changes of proteins. A new online CD analysis server (DichroMatch) has been developed for identifying proteins with similar spectral characteristics by detecting possible structurally and functionally related proteins and homologues. DichroMatch includes six different methods for determining the spectral nearest neighbours to a query protein spectrum and provides metrics of how similar these spectra are and, if corresponding crystal structures are available for the closest matched proteins, information on their secondary structures and fold classifications. By default, DichroMatch uses all the entries in the Protein Circular Dichroism Data Bank (PCDDB) for its comparison set, providing the broadest range of publicly available protein spectra to match with the unknown protein. Alternatively, users can download or create their own specialized data sets, thereby enabling comparisons between the structures of related proteins such as wild-type versus mutants or homologues or a series of spectra of the same protein under different conditions. The DichroMatch server is freely available at http://dichromatch.cryst.bbk.ac.uk
“Free Will and Affirmation: Assessing Honderich’s Third Way”
In the third and final part of his A Theory of Determinism (TD) Ted Honderich addresses the fundamental question concerning “the consequences of determinism.” The critical question he aims to answer is what follows if determinism is true? This question is, of course, intimately bound up with the problem of free will and, in particular, with the question of whether or not the truth of determinism is compatible or incompatible with the sort of freedom required for moral responsibility. It is Honderich’s aim to provide a solution to “the problem of the consequences of determinism” and a key element of this is his articulation and defence of an alternative response to the implications of determinism that collapses the familiar Compatibilist/Incompatibilist dichotomy. Honderich offers us a third way – the response of “Affirmation” (HFY 125-6). Although his account of Affirmation has application and relevance to issues and features beyond freedom and responsibility, my primary concern in this essay will be to examine Honderich’s theory of “Affirmation” as it concerns the free will problem
The Rules of Human T Cell Fate in vivo.
The processes governing lymphocyte fate (division, differentiation, and death), are typically assumed to be independent of cell age. This assumption has been challenged by a series of elegant studies which clearly show that, for murine cells in vitro, lymphocyte fate is age-dependent and that younger cells (i.e., cells which have recently divided) are less likely to divide or die. Here we investigate whether the same rules determine human T cell fate in vivo. We combined data from in vivo stable isotope labeling in healthy humans with stochastic, agent-based mathematical modeling. We show firstly that the choice of model paradigm has a large impact on parameter estimates obtained using stable isotope labeling i.e., different models fitted to the same data can yield very different estimates of T cell lifespan. Secondly, we found no evidence in humans in vivo to support the model in which younger T cells are less likely to divide or die. This age-dependent model never provided the best description of isotope labeling; this was true for naïve and memory, CD4+ and CD8+ T cells. Furthermore, this age-dependent model also failed to predict an independent data set in which the link between division and death was explored using Annexin V and deuterated glucose. In contrast, the age-independent model provided the best description of both naïve and memory T cell dynamics and was also able to predict the independent dataset
- …