32 research outputs found

    Case report: Chronic pain in a pediatric patient with late-onset pompe disease

    Get PDF
    Pompe disease (PD) is a rare inherited metabolic disorder of deficient or absent acid alpha-glucosidase (GAA), resulting in defective lysosomal glycogen catabolism. Muscle weakness, respiratory deficiency and gastrointestinal symptoms are commonly monitored in PD. However, pain and associated psychological symptoms are less focused upon. A pediatric patient with late-onset Pompe disease (LOPD) comorbid with chronic pain is presented. Symptoms of pain in the feet were first reported between 6 and 7 years of age and were attributed to growing pains. Following progression of lower body pain, weakness, fatigue, and difficulties with ambulation, a thorough clinical assessment including genetic testing was performed, which led to a diagnosis of LOPD at 9 years of age. ERT with recombinant human alglucosidase alfa was subsequently started. The patient’s clinical status is compounded by depressed mood, anxiety, and attention deficit hyperactivity disorder, which may further exacerbate pain. A multidisciplinary pain treatment approach consisting of orthopedics, physical therapy, and psychosocial therapy aimed at enhancing pain coping skills is described for this LOPD patient. This case highlights the need for a greater understanding of pain generation and identification of optimized pain treatment approaches in children with LOPD that can be implemented alongside ERT

    Ketogenic diet as a glycine lowering therapy in nonketotic hyperglycinemia and impact on brain glycine levels

    Get PDF
    BACKGROUND: Nonketotic hyperglycinemia (NKH) is a severe neurometabolic disorder characterized by increased glycine levels. Current glycine reduction therapy uses high doses of sodium benzoate. The ketogenic diet (KD) may represent an alternative method of glycine reduction. AIM: We aimed to assess clinical and biochemical effects of two glycine reduction strategies: high dose benzoate versus KD with low dose benzoate. METHODS: Six infants with NKH were first treated with high dose benzoate therapy to achieve target plasma glycine levels, and then switched to KD with low dose benzoate. They were evaluated as clinically indicated by physical examination, electroencephalogram, plasma and cerebral spinal fluid amino acid levels. Brain glycine levels were monitored by magnetic resonance spectroscopy (MRS). RESULTS: Average plasma glycine levels were significantly lower with KD compared to benzoate monotherapy by on average 28%. Two infants underwent comparative assessments of brain glycine levels via serial MRS. A 30% reduction of brain glycine levels was observed in the basal ganglia and a 50% reduction in the white matter, which remained elevated above normal, and was equivalent between the KD and high dose benzoate therapies. CSF analysis obtained while participants remained on the KD showed a decrease in glycine, serine and threonine levels, reflecting their gluconeogenetic usage. Clinically, half the patients had seizure reduction on KD, otherwise the clinical impact was variable. CONCLUSION: KD is an effective glycine reduction method in NKH, and may provide a more consistent reduction in plasma glycine levels than high-dose benzoate therapy. Both high-dose benzoate therapy and KD equally reduced but did not normalize brain glycine levels even in the setting of low-normal plasma glycine

    Family Experiences with Care for Children with Inherited Metabolic Diseases in Canada: A Cross-Sectional Survey

    Get PDF
    Background and Objective: Children with inherited metabolic diseases often require complex and highly specialized care. Patient and family-centered care can improve health outcomes that are important to families. This study aimed to examine experiences of family caregivers (parents/guardians) of children diagnosed with inherited metabolic diseases with healthcare to inform strategies to improve those experiences. Methods: A cross-sectional mailed survey was conducted of family caregivers recruited from an ongoing cohort study. Participants rated their healthcare experiences during their child’s visits to five types of healthcare settings common for inherited metabolic diseases: the metabolic clinic, the emergency department, hospital inpatient units, the blood laboratory, and the pharmacy. Participants provided narrative descriptions of any memorable negative or positive experiences. Results: There were 248 respondents (response rate 49%). Caregivers were generally very or somewhat satisfied with the care provided at each care setting. Appropriate treatment, provider knowledge, provider communication, and care coordination were deemed essential aspects of satisfaction with care by the majority of participants across many settings. Memorable negative experiences were reported by 8–22% of participants, varying by setting. Among participants who reported memorable negative experiences, contributing factors included providers’ demeanor, lack of communication, lack of involvement of the family, and disregard of an emergency protocol letter provided by the family. Conclusions: While caregivers’ satisfaction with care for children with inherited metabolic diseases was high, we identified gaps in family-centered care and factors contributing to negative experiences that are important to consider in the future development of strategies to improve pediatric care for inherited metabolic diseases

    Health Care for Mitochondrial Disorders in Canada: A Survey of Physicians

    Get PDF
    Background: An improved understanding of diagnostic and treatment practices for patients with rare primary mitochondrial disorders can support benchmarking against guidelines and establish priorities for evaluative research. We aimed to describe physician care for patients with mitochondrial diseases in Canada, including variation in care. Methods: We conducted a cross-sectional survey of Canadian physicians involved in the diagnosis and/or ongoing care of patients with mitochondrial diseases. We used snowball sampling to identify potentially eligible participants, who were contacted by mail up to five times and invited to complete a questionnaire by mail or internet. The questionnaire addressed: personal experience in providing care for mitochondrial disorders; diagnostic and treatment practices; challenges in accessing tests or treatments; and views regarding research priorities. Results: We received 58 survey responses (52% response rate). Most respondents (83%) reported spending 20% or less of their clinical practice time caring for patients with mitochondrial disorders. We identified important variation in diagnostic care, although assessments frequently reported as diagnostically helpful (e.g., brain magnetic resonance imaging, MRI/MR spectroscopy) were also recommended in published guidelines. Approximately half (49%) of participants would recommend mitochondrial cocktails for all or most patients, but we identified variation in responses regarding specific vitamins and cofactors. A majority of physicians recommended studies on the development of effective therapies as the top research priority. Conclusions: While Canadian physicians\u27 views about diagnostic care and disease management are aligned with published recommendations, important variations in care reflect persistent areas of uncertainty and a need for empirical evidence to support and update standard protocols

    PURA-Related Developmental and Epileptic Encephalopathy Phenotypic and Genotypic Spectrum

    Get PDF
    Background and Objectives Purine-rich element-binding protein A (PURA) gene encodes Pur-α, a conserved protein essential for normal postnatal brain development. Recently, a PURA syndrome characterized by intellectual disability, hypotonia, epilepsy, and dysmorphic features was suggested. The aim of this study was to define and expand the phenotypic spectrum of PURA syndrome by collecting data, including EEG, from a large cohort of affected patients. Methods Data on unpublished and published cases were collected through the PURA Syndrome Foundation and the literature. Data on clinical, genetic, neuroimaging, and neurophysiologic features were obtained. Results A cohort of 142 patients was included. Characteristics of the PURA syndrome included neonatal hypotonia, feeding difficulties, and respiratory distress. Sixty percent of the patients developed epilepsy with myoclonic, generalized tonic-clonic, focal seizures, and/or epileptic spasms. EEG showed generalized, multifocal, or focal epileptic abnormalities. Lennox-Gastaut was the most common epilepsy syndrome. Drug refractoriness was common: 33.3% achieved seizure freedom. We found 97 pathogenic variants in PURA without any clear genotype-phenotype associations. Discussion The PURA syndrome presents with a developmental and epileptic encephalopathy with characteristics recognizable from neonatal age, which should prompt genetic screening. Sixty percent have drug-resistant epilepsy with focal or generalized seizures. We collected more than 90 pathogenic variants without observing overt genotype-phenotype associations

    The clinical and genetic spectrum of autosomal-recessive TOR1A-related disorders.

    Get PDF
    In the field of rare diseases, progress in molecular diagnostics led to the recognition that variants linked to autosomal-dominant neurodegenerative diseases of later onset can, in the context of biallelic inheritance, cause devastating neurodevelopmental disorders and infantile or childhood-onset neurodegeneration. TOR1A-associated arthrogryposis multiplex congenita 5 (AMC5) is a rare neurodevelopmental disorder arising from biallelic variants in TOR1A, a gene that in the heterozygous state is associated to torsion dystonia-1 (DYT1 or DYT-TOR1A), an early-onset dystonia with reduced penetrance. While 15 individuals with TOR1A-AMC5 have been reported (less than 10 in detail), a systematic investigation of the full disease-associated spectrum has not been conducted. Here, we assess the clinical, radiological and molecular characteristics of 57 individuals from 40 families with biallelic variants in TOR1A. Median age at last follow-up was 3 years (0-24 years). Most individuals presented with severe congenital flexion contractures (95%) and variable developmental delay (79%). Motor symptoms were reported in 79% and included lower limb spasticity and pyramidal signs, as well as gait disturbances. Facial dysmorphism was an integral part of the phenotype, with key features being a broad/full nasal tip, narrowing of the forehead and full cheeks. Analysis of disease-associated manifestations delineated a phenotypic spectrum ranging from normal cognition and mild gait disturbance to congenital arthrogryposis, global developmental delay, intellectual disability, absent speech and inability to walk. In a subset, the presentation was consistent with fetal akinesia deformation sequence with severe intrauterine abnormalities. Survival was 71% with higher mortality in males. Death occurred at a median age of 1.2 months (1 week - 9 years) due to respiratory failure, cardiac arrest, or sepsis. Analysis of brain MRI studies identified non-specific neuroimaging features, including a hypoplastic corpus callosum (72%), foci of signal abnormality in the subcortical and periventricular white matter (55%), diffuse white matter volume loss (45%), mega cisterna magna (36%) and arachnoid cysts (27%). The molecular spectrum included 22 distinct variants, defining a mutational hotspot in the C-terminal domain of the Torsin-1A protein. Genotype-phenotype analysis revealed an association of missense variants in the 3-helix bundle domain to an attenuated phenotype, while missense variants near the Walker A/B motif as well as biallelic truncating variants were linked to early death. In summary, this systematic cross-sectional analysis of a large cohort of individuals with biallelic TOR1A variants across a wide age-range delineates the clinical and genetic spectrum of TOR1A-related autosomal-recessive disease and highlights potential predictors for disease severity and survival

    A checklist for managed access programmes for reimbursement co-designed by Canadian patients and caregivers

    Get PDF
    Introduction: Reimbursement decisions on orphan drugs carry significant uncertainty, and as the amount increases, so does the risk of making a wrong decision, where harms outweigh benefits. Consequently, patients often face limited access to orphan drugs. Managed access programmes (MAPs) are a mechanism for managing risk while enabling access to potentially beneficial drugs. Patients and their caregivers have expressed support for these programmes and see patient input as critical to successful implementation. However, they have yet to be systematically involved in their design. Objective: The aim of this study was to co-design with patients and caregivers a tool for the development of managed access programmes. Methods: Building upon established relationships with the Canadian Organization for Rare Disorders, the project team collaborated with patients and caregivers using the principles of participatory action research. Data were collected at two workshops and analysed using a thematic network approach. Results: Patients and caregivers co-designed a checklist comprised of six aspects of an ideal MAP relating to accountability (programme goals); governance (MAP-specific committee oversight, patient input, international collaboration); and evidence collection (outcome measures and continuation criteria, on-going monitoring and registries). They recognized that health-care resources are finite and considered disease or drug eligibility criteria for deciding when to use a MAP (eg drugs treating diseases for which there are no other legitimate alternatives). Conclusions: A patient and caregiver-designed checklist was created, which emphasized patient involvement and transparency. Further research is needed to examine the feasibility of this checklist and roles for other stakeholders

    Exploring patient and family involvement in the lifecycle of an orphan drug: A scoping review

    Get PDF
    Background: Patients and their families have become more active in healthcare systems and research. The value of patient involvement is particularly relevant in the area of rare diseases, where patients face delayed diagnoses and limited access to effective therapies due to the high level of uncertainty in market approval and reimbursement decisions. It has been suggested that patient involvement may help to reduce some of these uncertainties. This review explored existing and proposed roles for patients, families, and patient organizations at each stage of the lifecycle of therapies for rare diseases (i.e., orphan drug lifecycle). Methods: A scoping review was conducted using methods outlined by Arksey and O\u27Malley. To validate the findings from the literature and identify any additional opportunities that were missed, a consultative webinar was conducted with members of the Patient and Caregiver Liaison Group of a Canadian research network. Results: Existing and proposed opportunities for involving patients, families, and patient organizations were reported throughout the orphan drug lifecycle and fell into 12 themes: research outside of clinical trials; clinical trials; patient reported outcomes measures; patient registries and biorepositories; education; advocacy and awareness; conferences and workshops; patient care and support; patient organization development; regulatory decision-making; and reimbursement decision-making. Existing opportunities were not described in sufficient detail to allow for the level of involvement to be assessed. Additionally, no information on the impact of involvement within specific opportunities was found. Based on feedback from patients and families, documentation of existing opportunities within Canada is poor. Conclusions: Opportunities for patient, family, and patient organization involvement exist throughout the orphan drug lifecycle. However, based on the information found, it is not possible to determine which opportunities would be most effective at each stage

    Lipopolysaccharide-Binding Protein- and CD14-Dependent Activation of Mitogen-Activated Protein Kinase p38 by Lipopolysaccharide in Human Neutrophils Is Associated with Priming of Respiratory Burst

    No full text
    Neutrophil (PMN) functions can be primed for greatly increased oxidative radical release by exposure to certain agents such as lipopolysaccharide (LPS). Although a variety of signaling pathways involving both tyrosine kinases and mitogen-activated protein (MAP) kinases may be operative, the mechanisms of PMN priming are still not understood. We found that PMN priming was not achieved by treatment of cells with a very low concentration (5 ng/ml) of LPS unless additional “helper” factors were present in plasma (5%). Under these conditions, LPS induced tyrosine phosphorylation of a 38-kDa protein, which was coincident with the MAP kinase p38 action in this situation. LPS-mediated activation of p38 in human PMNs was dependent on the presence of LPS binding protein from plasma and CD14 on the surfaces of the cells. Phosphorylation of p38 was highly correlated with LPS priming of a formyl-methionyl-leucyl-phenylalanine (fMLP)-stimulated PMN respiratory burst. Treatment of PMN with the p38-specific inhibitor SB203580 significantly attenuated the respiratory burst in cells primed by LPS and stimulated by fMLP. These results suggest that the LPS signaling pathway leading to p38 activation may be an important mechanism in regulation of PMN priming. The mediator(s) linking CD14 to p38 involves proteins that are functionally sensitive to genistein but insensitive to tyrphostin AG126 and to Src- and Syk-family kinase, protein kinase C, and phosphatidylinositol 3-kinase inhibitors. Elucidating this pathway will provide insight into possible regulation of PMN priming by LPS
    corecore