57 research outputs found

    Developing a Pedagogical Framework for Designing a Multisensory Serious Gaming Environment

    Get PDF
    The importance of multisensory interaction for learning has increased with improved understanding of children’s sensory development, and a flourishing interest in embodied cognition. The potential to foster new forms of multisensory interaction through various sensor, mobile and haptic technologies is promising in providing new ways for young children to engage with key mathematical concepts. However, designing effective learning environments for real world classrooms is challenging, and requires a pedagogically, rather than technologically, driven approach to design. This paper describes initial work underpinning the development of a pedagogical framework, intended to inform the design of a multisensory serious gaming environment. It identifies the theoretical basis of the framework, illustrates how this informs teaching strategies, and outlines key technology research driven perspectives and considerations important for informing design. An initial table mapping mathematical concepts to design, a framework of considerations for design, and a process model of how the framework will continue to be developed across the design process are provided

    Hyperthyroidism and human chorionic gonadotrophin production in gestational trophoblastic disease

    Get PDF
    Background: Gestational trophoblastic disease (GTD) is a rare complication of pregnancy, ranging from molar pregnancy to choriocarcinoma. Patients with persistent disease require treatment with chemotherapy. For the vast majority, prognosis is excellent. Occasionally, GTD is complicated by hyperthyroidism, which may require treatment. This is thought to occur due to molecular mimicry between human chorionic gonadotrophin (HCG) and thyroid-stimulating hormone (TSH), and hence cross-reactivity with the TSH receptor. Hyperthyroidism usually resolves as the GTD is successfully treated and correspondingly HCG levels normalise. Methods: This paper reviews cases of GTD treated over a 5-year period at one of the three UK centres and identifies the prevalence of hyperthyroidism in this population. Four cases with clinical hyperthyroidism are discussed. Results: On review of the 196 patients with gestational trophoblastic neoplasia treated with chemotherapy in Sheffield since 2005, 14 (7%) had biochemical hyperthyroidism. Of these, four had evidence of clinical hyperthyroidism. Conclusion: Concomitant biochemical thyroid disease in patients with GTD is relatively common, and measurement of thyroid function in patients with persistent GTD is, therefore, important. The development of hyperthyroidism is largely influenced by the level of HCG and disease burden, and usually settles with treatment of the persistent GTD. However, rarely the thyroid stimulation can have potentially life-threatening consequences

    Improving mathematical learning in Scotland’s Curriculum for Excellence through problem posing:An integrative review

    Get PDF

    The SOLAS air-sea gas exchange experiment (SAGE) 2004

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 58 (2011): 753-763, doi:10.1016/j.dsr2.2010.10.015.The SOLAS air-sea gas exchange experiment (SAGE) was a multiple-objective study investigating gas-transfer processes and the influence of iron fertilisation on biologically driven gas exchange in high-nitrate low-silicic acid low-chlorophyll (HNLSiLC) Sub-Antarctic waters characteristic of the expansive Subpolar Zone of the southern oceans. This paper provides a general introduction and summary of the main experimental findings. The release site was selected from a pre-voyage desktop study of environmental parameters to be in the south-west Bounty Trough (46.5°S 172.5°E) to the south-east of New Zealand and the experiment conducted between mid-March and mid-April 2004. In common with other mesoscale iron addition experiments (FeAX’s), SAGE was designed as a Lagrangian study quantifying key biological and physical drivers influencing the air-sea gas exchange processes of CO2, DMS and other biogenic gases associated with an iron-induced phytoplankton bloom. A dual tracer SF6/3He release enabled quantification of both the lateral evolution of a labelled volume (patch) of ocean and the air-sea tracer exchange at the 10’s of km’s scale, in conjunction with the iron fertilisation. Estimates from the dual-tracer experiment found a quadratic dependency of the gas exchange coefficient on windspeed that is widely applicable and describes air-sea gas exchange in strong wind regimes. Within the patch, local and micrometeorological gas exchange process studies (100 m scale) and physical variables such as near-surface turbulence, temperature microstructure at the interface, wave properties, and wind speed were quantified to further assist the development of gas exchange models for high-wind environments. There was a significant increase in the photosynthetic competence (Fv/Fm) of resident phytoplankton within the first day following iron addition, but in contrast to other FeAX’s, rates of net primary production and column-integrated chlorophyll a concentrations had only doubled relative to the unfertilised surrounding waters by the end of the experiment. After 15 days and four iron additions totalling 1.1 tonne Fe2+, this was a very modest response compared to the other mesoscale iron enrichment experiments. An investigation of the factors limiting bloom development considered co- limitation by light and other nutrients, the phytoplankton seed-stock and grazing regulation. Whilst incident light levels and the initial Si:N ratio were the lowest recorded in all FeAX’s to date, there was only a small seed-stock of diatoms (less than 1% of biomass) and the main response to iron addition was by the picophytoplankton. A high rate of dilution of the fertilised patch relative to phytoplankton growth rate, the greater than expected depth of the surface mixed layer and microzooplankton grazing were all considered as factors that prevented significant biomass accumulation. In line with the limited response, the enhanced biological draw-down of pCO2 was small and masked by a general increase in pCO2 due to mixing with higher pCO2 waters. The DMS precursor DMSP was kept in check through grazing activity and in contrast to most FeAX’s dissolved dimethylsulfide (DMS) concentration declined through the experiment. SAGE is an important low-end member in the range of responses to iron addition in FeAX’s. In the context of iron fertilisation as a geoengineering tool for atmospheric CO2 removal, SAGE has clearly demonstrated that a significant proportion of the low iron ocean may not produce a phytoplankton bloom in response to iron addition.SAGE was jointly funded through the New Zealand Foundation for Research, Science and Technology (FRST) programs (C01X0204) "Drivers and Mitigation of Global Change" and (C01X0223) "Ocean Ecosystems: Their Contribution to NZ Marine Productivity." Funding was also provided for specific collaborations by the US National Science Foundation from grants OCE-0326814 (Ward), OCE-0327779 (Ho), and OCE 0327188 OCE-0326814 (Minnett) and the UK Natural Environment Research Council NER/B/S/2003/00282 (Archer). The New Zealand International Science and Technology (ISAT) linkages fund provided additional funding (Archer and Ziolkowski), and the many collaborator institutions also provided valuable support

    Participatory codesign of patient involvement in a Learning Health System: How can data-driven care be patient-driven care?

    No full text
    BACKGROUND: A Learning Health System (LHS) is a model of how routinely collected health data can be used to improve care, creating ‘virtuous cycles’ between data and improvement. This requires the active involvement of health service stakeholders, including patients themselves. However, to date, research has explored the acceptability of being ‘data donors’ rather than considering patients as active contributors. The study aimed to understand how patients should be actively involved in an LHS. DESIGN: Ten participatory codesign workshops were conducted with eight experienced public contributors using visual, collective and iterative methods. This led contributors to challenge and revise not only the idea of an LHS but also revise the study aims and outputs. RESULTS: The contributors proposed three exemplar roles for patients in patient‐driven LHS, which aligned with the idea of three forms of transparency: informational, participatory and accountability. ‘Epistemic injustice’ was considered a useful concept to express the risks of an LHS that did not provide active roles to patients (testimonial injustice) and that neglected their experience through collecting data that did not reflect the complexity of their lives (hermeneutic injustice). DISCUSSION: Patient involvement in an LHS should be ‘with and by’ patients, not ‘about or for’. This requires systems to actively work with and respond to patient feedback, as demonstrated within the study itself by the adaptive approach to responding to contributor questions, to work in partnership with patients to create a ‘virtuous alliance’ to achieve change. PATIENT OR PUBLIC CONTRIBUTION: Public contributors were active partners throughout, and co‐authored the paper

    A flexible updating framework for preconditioners in PDE-based image restoration algorithms

    No full text
    Abstract We propose the solution of some discretized partial differential equation models for image denoising and deblurring by iterative linear system solvers accelerated by a simple but flexible framework for updating incomplete factorization preconditioners that presents a computational cost linear in the number of the image pixels. Here we performsome tests where the efficiency of the strategy is confirmed
    • 

    corecore