2,189 research outputs found

    MR Angiography

    Get PDF

    Simultaneous, Unsteady PIV and Photogrammetry Measurements of a Tension-Cone Decelerator in Subsonic Flow

    Get PDF
    This paper describes simultaneous, synchronized, high-frequency measurements of both unsteady flow in the wake of a tension-cone decelerator in subsonic flow (by PIV) and the unsteady shape of the decelerator (by photogrammetry). The purpose of these measurements was to develop the test techniques necessary to validate numerical methods for computing fluid-structure interactions of flexible decelerators. A critical need for this effort is to map fabric surfaces that have buckled or wrinkled so that code developers can accurately represent them. This paper describes a new photogrammetric technique that performs this measurement. The work was done in support of the Entry, Descent, and Landing discipline within the Supersonics Project of NASA s Fundamental Aeronautics Program

    G7, central banking, and U.S. Interest rates

    Get PDF

    Thirty Meter Telescope Site Testing I: Overview

    Get PDF
    As part of the conceptual and preliminary design processes of the Thirty Meter Telescope (TMT), the TMT site testing team has spent the last five years measuring the atmospheric properties of five candidate mountains in North and South America with an unprecedented array of instrumentation. The site testing period was preceded by several years of analyses selecting the five candidates, Cerros Tolar, Armazones and Tolonchar in northern Chile; San Pedro Martir in Baja California, Mexico and the 13 North (13N) site on Mauna Kea, Hawaii. Site testing was concluded by the selection of two remaining sites for further consideration, Armazones and Mauna Kea 13N. It showed that all five candidates are excellent sites for an extremely large astronomical observatory and that none of the sites stands out as the obvious and only logical choice based on its combined properties. This is the first article in a series discussing the TMT site testing project.Comment: Accepted for publication in PASP, April 2009 issu

    Preconditioning Human Adipose-Derived Stromal Cells on Decellularized Adipose Tissue Scaffolds Within a Perfusion Bioreactor Modulates Cell Phenotype and Promotes a Pro-regenerative Host Response

    Get PDF
    Cell-based therapies involving the delivery of adipose-derived stromal cells (ASCs) on decellularized adipose tissue (DAT) scaffolds are a promising approach for soft tissue augmentation and reconstruction. Our lab has recently shown that culturing human ASCs on DAT scaffolds within a perfusion bioreactor prior to implantation can enhance their capacity to stimulate in vivo adipose tissue regeneration. Building from this previous work, the current study investigated the effects of bioreactor preconditioning on the ASC phenotype and secretory profile in vitro, as well as host cell recruitment following implantation in an athymic nude mouse model. Immunohistochemical analyses indicated that culturing within the bioreactor increased the percentage of ASCs co-expressing inducible nitric oxide synthase (iNOS) and arginase-1 (Arg-1), as well as tumor necrosis factor-alpha (TNF-α) and interleukin-10 (IL-10), within the peripheral regions of the DAT relative to statically cultured controls. In addition, bioreactor culture altered the expression levels of a range of immunomodulatory factors in the ASC-seeded DAT. In vivo testing revealed that culturing the ASCs on the DAT within the perfusion bioreactor prior to implantation enhanced the infiltration of host CD31+ endothelial cells and CD26+ cells into the DAT implants, but did not alter CD45+F4/80+CD68+ macrophage recruitment. However, a higher fraction of the CD45+ cell population expressed the pro-regenerative macrophage marker CD163 in the bioreactor group, which may have contributed to enhanced remodeling of the scaffolds into host-derived adipose tissue. Overall, the findings support that bioreactor preconditioning can augment the capacity of human ASCs to stimulate regeneration through paracrine-mediated mechanisms

    Brucella abortus Infection of Placental Trophoblasts Triggers Endoplasmic Reticulum Stress-Mediated Cell Death and Fetal Loss via Type IV Secretion System-Dependent Activation of CHOP.

    Get PDF
    Subversion of endoplasmic reticulum (ER) function is a feature shared by multiple intracellular bacteria and viruses, and in many cases this disruption of cellular function activates pathways of the unfolded protein response (UPR). In the case of infection with Brucella abortus, the etiologic agent of brucellosis, the unfolded protein response in the infected placenta contributes to placentitis and abortion, leading to pathogen transmission. Here we show that B. abortus infection of pregnant mice led to death of infected placental trophoblasts in a manner that depended on the VirB type IV secretion system (T4SS) and its effector VceC. The trophoblast death program required the ER stress-induced transcription factor CHOP. While NOD1/NOD2 expression in macrophages contributed to ER stress-induced inflammation, these receptors did not play a role in trophoblast death. Both placentitis and abortion were independent of apoptosis-associated Speck-like protein containing a caspase activation and recruitment domain (ASC). These studies show that B. abortus uses its T4SS to induce cell-type-specific responses to ER stress in trophoblasts that trigger placental inflammation and abortion. Our results suggest further that in B. abortus the T4SS and its effectors are under selection as bacterial transmission factors.IMPORTANCE Brucella abortus infects the placenta of pregnant cows, where it replicates to high levels and triggers abortion of the calf. The aborted material is highly infectious and transmits infection to both cows and humans, but very little is known about how B. abortus causes abortion. By studying this infection in pregnant mice, we discovered that B. abortus kills trophoblasts, which are important cells for maintaining pregnancy. This killing required an injected bacterial protein (VceC) that triggered an endoplasmic reticulum (ER) stress response in the trophoblast. By inhibiting ER stress or infecting mice that lack CHOP, a protein induced by ER stress, we could prevent death of trophoblasts, reduce inflammation, and increase the viability of the pups. Our results suggest that B. abortus injects VceC into placental trophoblasts to promote its transmission by abortion

    A Roadmap For Scientific Ballooning 2020-2030

    Full text link
    From 2018 to 2020, the Scientific Balloon Roadmap Program Analysis Group (Balloon Roadmap PAG) served as an community-based, interdisciplinary forum for soliciting and coordinating community analysis and input in support of the NASA Scientific Balloon Program. The Balloon Roadmap PAG was tasked with articulating and prioritizing the key science drivers and needed capabilities of the Balloon Program for the next decade. Additionally, the Balloon Roadmap PAG was asked to evaluate the potential for achieving science goals and maturing technologies of the Science Mission Directorate, evaluate the Balloon Program goals towards community outreach, and asses commercial balloon launch opportunities. The culmination of this work has been a written report submitted to the NASA Astrophysics Division Director.Comment: 95 pages, 69 figures, prepared by the NASA Balloon Program Analysis Group for the NASA Astrophysics Division Director and the 2020 Astrophysics Decadal Surve

    Complex petal spot formation in the Beetle Daisy ( Gorteria diffusa ) relies on spot‐specific accumulation of malonylated anthocyanin regulated by paralogous G d MYBSG 6 transcription factors

    Get PDF
    Summary: Gorteria diffusa has elaborate petal spots that attract pollinators through sexual deception, but how G. diffusa controls spot development is largely unknown. Here, we investigate how pigmentation is regulated during spot formation. We determined the anthocyanin composition of G. diffusa petals and combined gene expression analysis with protein interaction assays to characterise R2R3‐MYBs that likely regulate pigment production in G. diffusa petal spots. We found that cyanidin 3‐glucoside pigments G. diffusa ray floret petals. Unlike other petal regions, spots contain a high proportion of malonylated anthocyanin. We identified three subgroup 6 R2R3‐MYB transcription factors (GdMYBSG6‐1,2,3) that likely activate the production of spot pigmentation. These genes are upregulated in developing spots and induce ectopic anthocyanin production upon heterologous expression in tobacco. Interaction assays suggest that these transcription factors regulate genes encoding three anthocyanin synthesis enzymes. We demonstrate that the elaboration of complex spots in G. diffusa begins with the accumulation of malonylated pigments at the base of ray floret petals, positively regulated by three paralogous R2R3‐MYB transcription factors. Our results indicate that the functional diversification of these GdMYBSG6s involved changes in the spatial control of their transcription, and modification of the duration of GdMYBSG6 gene expression contributes towards floral variation within the species

    Orion Crew Module Aerodynamic Testing

    Get PDF
    The Apollo-derived Orion Crew Exploration Vehicle (CEV), part of NASA s now-cancelled Constellation Program, has become the reference design for the new Multi-Purpose Crew Vehicle (MPCV). The MPCV will serve as the exploration vehicle for all near-term human space missions. A strategic wind-tunnel test program has been executed at numerous facilities throughout the country to support several phases of aerodynamic database development for the Orion spacecraft. This paper presents a summary of the experimental static aerodynamic data collected to-date for the Orion Crew Module (CM) capsule. The test program described herein involved personnel and resources from NASA Langley Research Center, NASA Ames Research Center, NASA Johnson Space Flight Center, Arnold Engineering and Development Center, Lockheed Martin Space Sciences, and Orbital Sciences. Data has been compiled from eight different wind tunnel tests in the CEV Aerosciences Program. Comparisons are made as appropriate to highlight effects of angle of attack, Mach number, Reynolds number, and model support system effects
    corecore