48 research outputs found

    In Vitro Antibiofilm Efficacies of Different Antibiotic Combinations with Zinc Sulfate against \u3cem\u3ePseudomonas aeruginosa\u3c/em\u3e Recovered from Hospitalized Patients with Urinary Tract Infection

    Get PDF
    Urinary tract infections (UTIs) are a serious healthcare dilemma influencing millions of patients every year and represent the second most frequent type of body infection. Pseudomonas aeruginosa is a multidrug-resistant pathogen causing numerous chronic biofilm-associated infections including urinary tract, nosocomial, and medical devices-related infections. In the present study, the biofilm of P. aeruginosa CCIN34519, recovered from inpatients with UTIs, was established on polystyrene substratum and scanning electron microscopy (SEM) and was utilized for visualization of the biofilm. A previously described in vitro system for real-time monitoring of biofilm growth/inhibition was utilized to assess the antimicrobial effects of ciprofloxacin, levofloxacin, moxifloxacin, norfloxacin, ertapenem, ceftriaxone, gentamicin, and tobramycin as single antibiotics as well as in combinations with zinc sulfate (2.5 mM) against P. aeruginosa CCIN34519 biofilm. Meanwhile, minimum inhibitory concentrations (MICs) at 24 h and mutant prevention concentrations (MPCs) at 96 h were determined for the aforementioned antibiotics. The real-time monitoring data revealed diverse responses of P. aeruginosa CCIN34519 biofilm to the tested antibiotic-zinc sulfate combinations with potential synergisms in cases of fluoroquinolones (ciprofloxacin, levofloxacin, moxifloxacin, and norfloxacin) and carbapenem (ertapenem) as demonstrated by reduced MIC and MPC values. Conversely, considerable antagonisms were observed with cephalosporin (ceftriaxone) and aminoglycosides (gentamicin, and tobramycin) as shown by substantially increased MICs and MPCs values. Further deliberate in vivo investigations for the promising synergisms are required to evaluate their therapeutic potentials for treatment of UTIs caused by P. aeruginosa biofilms as well as for developing preventive strategies

    A High-Throughput In Vitro Model Illustrating Potential Microbiologocal Interactions During Treatment of \u3cem\u3ePseudomonas aeroginosa\u3c/em\u3e Biofilm Associated Infections

    Get PDF
    Objective: Amend a real-time, high-throughput method of bacterial growth detection for use as a model of biofilm response to co-administered pharmaceuticals during the treatment of devise associated infections. Background: Biofilms are the root etiology for chronic infections, particularly in regard to infections in patients with implanted medical devices. Calcium channel blockers (CCBs) are used for control of hypertension and angina and are commonly prescribed to elderly patients. We address potential interference of commonly prescribed CCBs with levofloxacin for treatment of Pseudomonas aeruginosa biofilms. Methods: Inoculum of 1โ€“3ร—106CFUโˆ•mL in the log phase were seeded into each well of a polystyrene plate. Biofilms developed over 6h at 37ยฐC, was washed and medium containing various CCBs plus levofloxacin was added to the biofilm. OD measurements were obtained at 1h intervals over 90h at 37ยฐC. Changes in turbidity were kinetically measured with a vertical photometer with a wide-band filter. Results: Mibefradil and diltiazem appear to be strongly antagonistic toward levofloxacin where both of them decrease antibiofilm effect of levofloxacin and they encourage the selection of resistant mutants from biofilm. Discussion: Implanted medical devices are quite common and are subjected to biofilm infections. Increasing multi-drug resistance underscores the need to conserve current antibiotics by judicious use. This necessitates consideration of evidence regarding antagonistic or synergistic activity of commonly prescribed drugs of different classes toward commonly used antibiotics. The combinations described here show vital and previously unreported effects of some CCBs when co-prescribed with levofloxacin on Pseudomonas aeruginosa biofilm

    Fake it till you make it: Fishing for Catfishes

    Get PDF
    Many adult content websites incorporate social networking features. Although these are popular, they raise significant challenges, including the potential for users to "catfish", i.e., to create fake profiles to deceive other users. This paper takes an initial step towards automated catfish detection. We explore the characteristics of the different age and gender groups, identifying a number of distinctions. Through this, we train models based on user profiles and comments, via the ground truth of specially verified profiles. Applying our models for age and gender estimation of unverified profiles, we identify 38% of profiles who are likely lying about their age, and 25% who are likely lying about their gender. We find that women have a greater propensity to catfish than men. Further, whereas women catfish select from a wide age range, men consistently lie about being younger. Our work has notable implications on operators of such online social networks, as well as users who may worry about interacting with catfishes

    Fake it till you make it:Fishing for Catfishes

    Get PDF
    Many adult content websites incorporate social networking features. Although these are popular, they raise significant challenges, including the potential for users to "catfish", i.e., to create fake profiles to deceive other users. This paper takes an initial step towards automated catfish detection. We explore the characteristics of the different age and gender groups, identifying a number of distinctions. Through this, we train models based on user profiles and comments, via the ground truth of specially verified profiles. Applying our models for age and gender estimation of unverified profiles, we identify 38% of profiles who are likely lying about their age, and 25% who are likely lying about their gender. We find that women have a greater propensity to catfish than men. Further, whereas women catfish select from a wide age range, men consistently lie about being younger. Our work has notable implications on operators of such online social networks, as well as users who may worry about interacting with catfishes

    Inhibition of Adhesion and Invasion of \u3cem\u3ePseudomonas aeruginosa\u3c/em\u3e to Lung Epithelial Cells: A Model of Cystic Fibrosis Infection

    Get PDF
    Over their life time, CF patients experience multiple infections by various pneumoniacausing bacteria [6]. With more patients surviving to adulthood, chronic infections with Pseudomonas aeruginosa are coming to the forefront as a leading cause of death [7]. Problems presented by infected CF lung are multi-dimensional; the electrolyte balance and pH of the fluids are abnormal. The mucus is thick and of an alternative composition compared to normal lung and may contribute to colonization with Pseudomonas aeruginosa [2, 3, 5]. As such, research is multi-pronged and includes gene therapy to correct the defective protein, amelioration of inflammatory response and thinning of alveolar surface fluids [8, 9]. Significantly, Pseudomonas bacteria colonize the CF lung far easier than normal lung. Normal lung tissue has several naturally occurring defenses that work in concert with commonly prescribed antibiotics for recovery from lung infections [4, 10]. The CF patient appears to lack these natural defenses [1, 7].https://digitalcommons.chapman.edu/pharmacy_books/1009/thumbnail.jp

    Cumulative clinical experience from over a decade of use of levofloxacin in community-acquired pneumonia: critical appraisal and role in therapy

    Get PDF
    Levofloxacin is the synthetic L-isomer of the racemic fluoroquinolone, ofloxacin. It interferes with critical processes in the bacterial cell such as DNA replication, transcription, repair, and recombination by inhibiting bacterial topoisomerases. Levofloxacin has broad spectrum activity against several causative bacterial pathogens of community-acquired pneumonia (CAP). Oral levofloxacin is rapidly absorbed and is bioequivalent to the intravenous formulation such that patients can be conveniently transitioned between these formulations when moving from the inpatient to the outpatient setting. Furthermore, levofloxacin demonstrates excellent safety, and has good tissue penetration maintaining adequate concentrations at the site of infection. The efficacy and tolerability of levofloxacin 500 mg once daily for 10 days in patients with CAP are well established. Furthermore, a high-dose (750 mg) and short-course (5 days) of once-daily levofloxacin has been approved for use in the US in the treatment of CAP, acute bacterial sinusitis, acute pyelonephritis, and complicated urinary tract infections. The high-dose, short-course levofloxacin regimen maximizes its concentration-dependent antibacterial activity, decreases the potential for drug resistance, and has better patient compliance

    Production and Characterization of Phospholipases C from some Bacillus thuringiensis Isolates Recovered from Egyptian Soil

    Get PDF
    Two hundred and thirty one isolates, with the characteristic morphology of Genus Bacillus, were recovered from 100 soil samples collected from 7 different Egyptian governorates, and were screened for phospholipase C (PLC) production by egg-yolk plate method. Sixty isolates have shown very high PLC production and were further assessed using chromogenic assay method. The highest five producers, identified by 16S rRNA gene sequencing as Bacillus thuringiensis, were selected and their PLCs were purified to homogeneity using ammonium sulfate precipitation and Sephadex G-75 gel filtration chromatography. PLCs had molecular masses of 28.5 kDa as indicated by SDS-PAGE. The characteristics of the studied five PLCs were having maximal activities at 35-45ยฐC and pH 7.2. The enzymes could retain more than half of their maximum activities at 30-60ยฐC and pH 7-8. Equivalent activities were recorded at low water tension. PLC from B. thuringiensis KT159186 was relatively thermostable with a maximum activity at 40ยฐC. The half-inactivation temperature was above 50ยฐC, which compared favorably to that of other enzymes. Activity at the wide temperature range (20-80ยฐC) was high (about 50% of maximum),. This PLC could tolerate pH as high as 12 with only 30% loss of activity. Specificity pattern of PLC from the same isolate showed equivalent activities toward phosphatidylcholine and phosphatidylinositol in addition to marked activity toward phosphatidylethanolamine, which makes it a typical non-specific PLC for industrial purposes. In conclusion, these characteristics of PLC from the test isolate make it attractive for various industrial applications

    Improvement of Bioconversion of Vitamin D3 into Calcitriol by Actinomyces hyovaginalis through Protoplast Fusion and Enzyme Immobilization

    Get PDF
    Protoplast fusion and enzyme immobilization techniques were applied to increase calcitriol production from vitamin D3 using Actinomyces hyovaginalis, a local isolate recovered from Egyptian soil, that has a potential bioconversion activity of vitamin D3 into calcitriol. A total of sixteen protoplast hybrids, formed between Actinomyces hyovaginalis isolate and two Bacillus species (B. thuringiensis and B. weihenstephanensis) were screened for vitamin D3 bioconversion activity. Compared to wild type isolate, four hybrids (formed between Actinomyces hyovaginalis isolate and B. thuringiensis) were found to preserve the bioconversion activity; out of which, three hybrids coded V2B, V3B and V8A exhibited higher calcitriol production. The hybrids coded V2B and V8A produced, per 1 L culture medium, about 0.5 and 0.4 mg calcitriol corresponding to 350% and 280%, respectively, increase compared to the wild type isolate. Among different alginate concentrations applied, immobilization of cell lysate of Actinomyces hyovaginalis isolate using 2% alginate showed 140% increase in calcitriol production from vitamin D3 compared to the free cell lysate. Activity of the immobilized form was preserved for five repetitive uses over a period of 15 days but with a 50% decline in production occurring at the fifth use

    Antimicrobial, Antibiofilm and Immunomodulatory Activities of Lactobacillus rhamnosus and Lactobacillus gasseri against some Bacterial Pathogens

    Get PDF
    In this study, two Lactobacillus (LAB) strains namely, Lactobacillus rhamnosus EMCC 1105 (L. rhamnosus) and Lactobacillus gasseri EMCC 1930 (L. gasseri) were tested for their antagonistic activities against Pseudomonas aeruginosa (P. aeruginosa), Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) which are known to be frequently implicated in biofilm infections. The acidic cell free culture supernatant (CFS) of 24 h and 48 h cultures of both LAB stains showed antimicrobial effects against the three pathogens in radial diffusion assay. These effects were abolished upon neutralization of CFS indicating that this effect was due to acids only. Both LAB strains could effectively inhibit the biofilm formation of the three test pathogens and largely replaced them on polystyrene surfaces as demonstrated by crystal violet staining, viable count and scanning electron microscopy. Both of the tested LAB strains could inhibit the protease productivity of S. aureus in 24 h and 48 h dual species-biofilms. The supernatant of 24 h-dual biofilms of P. aeruginosa with L. gasseri also showed a significantly lower protease activity compared to that of P. aeruginosa individual biofilm. Neither LAB strains affected phospholipase C production by the test pathogens when they co-exist during biofilm formation. The different preparations of LAB strains caused no significant change in the levels of gamma interferon expressed by peripheral blood mononuclear cells in response to stimulation by the test pathogens in vitro. In conclusion, L. gasseri and L. rhamnosus can be considered as promising tools for combating biofilm infections
    corecore