5 research outputs found

    Combining Biocompatible and Biodegradable Scaffolds and Cold Atmospheric Plasma for Chronic Wound Regeneration

    Get PDF
    Skin regeneration is a quite complex process. Epidermal differentiation alone takes about 30 days and is highly regulated. Wounds, especially chronic wounds, affect 2% to 3% of the elderly population and comprise a heterogeneous group of diseases. The prevailing reasons to develop skin wounds include venous and/or arterial circulatory disorders, diabetes, or constant pressure to the skin (decubitus). The hallmarks of modern wound treatment include debridement of dead tissue, disinfection, wound dressings that keep the wound moist but still allow air exchange, and compression bandages. Despite all these efforts there is still a huge treatment resistance and wounds will not heal. This calls for new and more efficient treatment options in combination with novel biocompatible skin scaffolds. Cold atmospheric pressure plasma (CAP) is such an innovative addition to the treatment armamentarium. In one CAP application, antimicrobial effects, wound acidification, enhanced microcirculations and cell stimulation can be achieved. It is evident that CAP treatment, in combination with novel bioengineered, biocompatible and biodegradable electrospun scaffolds, has the potential of fostering wound healing by promoting remodeling and epithelialization along such temporarily applied skin replacement scaffolds

    Mechanical Characterization of Human Trabecular and Formed Granulate Bone Cylinders Processed by High Hydrostatic Pressure

    No full text
    Waletzko-Hellwig J, Saemann M, Schulze M, Frerich B, Bader R, Dau M. Mechanical Characterization of Human Trabecular and Formed Granulate Bone Cylinders Processed by High Hydrostatic Pressure. Materials. 2021;14(5): 1069.One main disadvantage of commercially available allogenic bone substitute materials is the altered mechanical behavior due to applied material processing, including sterilization methods like thermal processing or gamma irradiation. The use of high hydrostatic pressure (HHP) might be a gentle alternative to avoid mechanical alteration. Therefore, we compressed ground trabecular human bone to granules and, afterwards, treated them with 250 and 300 MPa for 20 and 30 min respectively. We characterized the formed bone granule cylinders (BGC) with respect to their biomechanical properties by evaluating stiffness and stress at 15% strain. Furthermore, the stiffness and yield strength of HHP-treated and native human trabecular bone cylinders (TBC) as control were evaluated. The mechanical properties of native vs. HHP-treated TBCs as well as HHP-treated vs. untreated BGCs did not differ, independent of the applied HHP magnitude and duration. Our study suggests HHP treatment as a suitable alternative to current processing techniques for allogenic bone substitutes since no negative effects on mechanical properties occurred

    Devitalizing Effect of High Hydrostatic Pressure on Human Cells—Influence on Cell Death in Osteoblasts and Chondrocytes

    No full text
    Chemical and physical processing of allografts is associated with a significant reduction in biomechanics. Therefore, treatment of tissue with high hydrostatic pressure (HHP) offers the possibility to devitalize tissue gently without changing biomechanical properties. To obtain an initial assessment of the effectiveness of HHP treatment, human osteoblasts and chondrocytes were treated with different HHPs (100–150 MPa, 250–300 MPa, 450–500 MPa). Devitalization efficiency was determined by analyzing the metabolic activity via WST-1(water-soluble tetrazolium salt) assay. The type of cell death was detected with an apoptosis/necrosis ELISA (enzyme-linked immune sorbent assay) and flow cytometry. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) were carried out to detect the degree of cell destruction. After HHP treatment, the metabolic activities of both cell types decreased, whereas HHP of 250 MPa and higher resulted in metabolic inactivation. Further, the highest HHP range induced mostly necrosis while the lower HHP ranges induced apoptosis and necrosis equally. FESEM and TEM analyses of treated osteoblasts revealed pressure-dependent cell damage. In the present study, it could be proven that a pressure range of 250–300 MPa can be used for cell devitalization. However, in order to treat bone and cartilage tissue gently with HHP, the results of our cell experiments must be verified for tissue samples in future studies

    Effects of the Interleukin-6 Receptor Blocker Sarilumab on Metabolic Activity and Differentiation Capacity of Primary Human Osteoblasts

    No full text
    Interleukin (IL-) 6 is a key factor in the inflammatory processes of rheumatoid arthritis. Several biologic agents target the IL-6 signaling pathway, including sarilumab, a monoclonal antibody that blocks the IL-6 receptor and inhibits IL-6-mediated cis- and trans-signaling. A careful analysis of the IL-6 signaling blockade should consider not only inflammatory processes but also the regenerative functions of IL-6. The purpose of this study was to investigate whether inhibition of the IL-6 receptors affects differentiation of human primary osteoblasts (hOB). The effects of sarilumab on viability and the differentiation capacity in unstimulated osteoblasts as well as after stimulation with various IL-6 and sIL6-R concentrations were determined. Sarilumab treatment alone did not affect the differentiation or induction of inflammatory processes in hOB. However, the significant induction of alkaline phosphatase activity which was observed after exogenous IL-6/sIL-6R costimulation at the highest concentrations was reduced back to baseline levels by the addition of sarilumab. The IL-6 receptor blockade also decreased gene expression of mediators required for osteogenesis and bone matrix maintenance. Our results demonstrate that concomitant administration of the IL-6 receptor blocker sarilumab can inhibit IL-6/sIL-6R-induced osteogenic differentiation

    Initial study on removing cellular residues from hydrostatic high-pressure treated allogeneic tissue using ultrasound

    No full text
    Hydrostatic high-pressure technology (HHD) devitalizes tissue quickly and gently, without negatively affecting the structural properties. HHD-treated tissues must be cleaned from devitalized cells. A partially automated, gentle, reproducible and timesaving rinsing test setup utilizing ultrasound is demonstrated in this study. The test setup is used to clean HHD-treated bone allografts of tissue residues and prevent microbiological contamination. A rinsing procedure is investigated. Residual DNA content determination is utilized to analyze cleaned bone allograft tissue for rinsing procedure evaluation
    corecore