11 research outputs found

    Vegetation plot and trait data from phonolitic and basaltic rocks on La Palma (Canary Islands, Spain)

    Get PDF
    Geodiversity promotes biodiversity by increasing habitat heterogeneity. In times of a global biodiversity decline, data about diversity on such geological elements gains importance, also regarding conservation and restoration. In the Canary Islands, phonolitic rocks are geological elements of volcanic origin that represent additional habitat for species. In the southern part of the island La Palma, phonolite rocks can be encountered in matrices of young lava. We provide biotic and abiotic records from 60 plots of 2 m × 2 m, sampled on phonolitic and neighbouring basaltic outcrops at four different sites that cover a wide environmental gradient. The recorded parameters were species abundances (percentage cover), plant individuals' frequency (number of plant individuals per plot and species), plant growth height (in cm), and canopy diameter (in cm). Additionally, lichen cover (percentage cover) was estimated. To describe site specific characteristics, we recorded plot surface dynamics (3D rock surface), aspect, and inclination. This data set covers vegetation and trait data comparing phonolites and basalts on La Palma. It can be used for island biogeography, vegetation ecology and conservation sciences to help support fundamental research related to insular biodiversity and endemism, and to identify priority areas for protection and preservation in the Canary Islands

    Outdoor cycling activity affected by COVID-19 related epidemic-control-decisions

    Get PDF
    AimThe lockdown of sports infrastructure due to the COVID-19 pandemic has substantially shifted people's physical activity towards public green spaces. With Germany's lockdown as one of the more severe governmentally imposed epidemic-control-decisions, we tested to what extent the frequency of outdoor cycling activities changed from March to June 2020.MethodsUser behaviour and frequency in 15 urban and 7 rural German public green spaces was quantified using cycling data from the fitness application Strava. Changes in cycling activities were analysed with four different generalised linear models, correcting for factors like weather conditions and temporal changes in the user base of the fitness application.ResultsWe found a clear increase in outdoor cycling sport activities in urban public green spaces in response to epidemic-control decisions (e.g. increase by 81% in April relative to the expected value (95% CI [48%, 110%])). In contrast, biking in rural areas showed no significant change with epidemic-control-decisions in place.ConclusionFitness App data, e.g. from Strava, can be used to monitor visitor behaviour and frequency. The increase in outdoor cycling activities during epidemic control decisions likely reflects a shift of sport activities from indoor and team sports to outdoor and individual sports. This highlights the importance of accessible green space for maintaining physical fitness and health. Beyond this shift, it is likely that outdoor activities may be of particularly importance for stress relief in times of crisis such as the current COVID-19 pandemic

    Plant dispersal characteristics shape the relationship of diversity with area and isolation

    Get PDF
    Aim This study disentangles how plant dispersal syndromes influence the relationship of species richness with area and isolation while also accounting for the human impact on island biodiversity. It builds on the potential of islands at the mesoscale and of similar origin to contribute to the ongoing discussion in island biogeography on what determines species richness and filtering. Location Denmark, 54 saltwater and brackish water islands in the North and Baltic Sea Taxon Vascular plants, including pteridophytes (ferns, clubmosses and horsetails) Methods Generalized linear models (GLMs) and linear regressions are used to analyse how dispersal syndromes influence the relationships of species numbers with island area and isolation, as well as island inhabitation and human density, respectively. Results Species numbers, as well as mean seed mass and the proportion of zoochore and anemochore species, are positively related to island area while the share of water-dispersed species decreases with increasing area. The slope of the regression line representing the species-area relationship (SAR) was 0.34 and lies within the common range for this relationship. Isolation is weakly related to mean seed mass but has no explaining power for species numbers and the presence of specific dispersal syndrome on the target islands. Species richness and seed mass was positively related to human presence. Main conclusions Human impact for centuries has not overwritten the strong relationship of species richness with area on the Danish Islands but is affecting the shape of this relationship. Island area constitutes a strong filter for different dispersal syndromes and leads to the assumption that heavier and animal-dispersed seeds are positively related to island area due to the presence of more bird and mammal species. Human-induced loss of isolation caused by ongoing traffic and the connection of landmasses by bridges and ferries may be a reason for the overall low explanatory power of island isolation. Higher species richness on inhabited islands may further be linked to higher habitat diversity in human modified landscapes.The data file (.xlsx file) can be opened in Excel or Libre Office. It might be easiest to access the data file in R as it can then be used in combination with the provided R code.The dataset consists of three parts: (I) Environmental data listing the 54 studied Danish Islands including island characteristics, (II) plant species occurrence data (presence/absence data) on these islands, and (III) trait data of vascular plants that form part of the study. Environmental data For all target islands, information on isolation to continental land masses, island area, and the number of island inhabitants were gathered. The exact geographic position and precise boundaries of the 54 target islands were determined in GIS. This allowed us to calculate isolation as the shortest distance to the nearest mainland (species pool; considering the largest islands Saelland, Vendsyssel-Thyto, and Fyn to be part of continental Denmark), and surface area of the individual islands. To account for human alterations we identified inhabited and uninhabited islands and calculated human density (number of island inhabitants per ha). The number of island inhabitants was compiled from Danmarks Statistik (2021) and for smaller islands, we used Google Earth images (© Google Earth 2021) to verify that no houses were present on the island (human density = 0). Danmarks Statistik (2021). www.statbank.dk/BEF4 (last accessed on 25.10.2021). Species occurrence data Species occurrence data was extracted from a comprehensive data set compiled by Erik Wessberg and co-workers since 1979. It became available in 2011 on the homepage of the Danish Botanical Society as a series of commented species lists, one for each of the islands or cluster of islands surveyed in total (Wessberg et al. 2011). Wessberg, E. et al. (2011). Homepage of the Danish Botanical Society, accessed 10 June 2012, https://botaniskforening.dk/botanik/ofloraer/. Trait data Trait information on seed mass (mg) and dispersal syndromes (zoochory, hydrochory, anemochory, and autochory) were gathered for the 1201 species found on 54 Danish islands from a set of databases: mainly Royal Botanic Gardens Kew (2016), LEDA database (Kleyer et al., 2008) and additionally Ecological Flora of The British Isles (Fitter & Peat, 1994), BiolFlor (Klotz, et al., 2002), BROT trait database for plant species of the Mediterranean Basin (Paula et al., 2009), and D³, The Dispersal and Diaspore Database (Hintze, et al. 2013). Gaps in the data (roughly 100 species) were filled, when possible, by interpolation based on the traits of other species of the same genus, and ferns and clubmosses were assigned the smallest seed mass value in the dataset. Fitter, A. H. & Peat, H. J. 1994. The Ecological Flora Database. Journal of Ecology 82, 415-425. Hintze, C., Heydel F, Hoppe C, Cunze S, König A & Tackenberg O. (2013). D³: The Dispersal and Diaspore Database - Baseline data and statistics on seed dispersal. – Perspectives in Plant Ecology and Evolutionary Syst., 15, 180-192. Kleyer, M., Bekker, R., Knevel, I., Bakker, J., Thompson, K., Sonnenschein, M., … Peco, B. (2008). The LEDA Traitbase: A database of life-history traits of Northwest European flora. Journal of Ecology, 96, 1266-1274 Klotz, S., Kühne, I., & Walter, D. S. (2002). BIOLFLOR - Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland. – Schriftenreihe für Vegetationskunde 38. Bonn: Bundesamt für Naturschutz. Paula, S., Arianoutsou, M., Kazanis, D., Tavsanoglu, Ç., Lloret, F., Buhk, C., Ojeda, F., Luna, B., Moreno, J. M., Rodrigo, A., Espelta, J. M., Palacio, S., Fernández-Santos, B., Fernandes, P. M., & Pausas, J.G. (2009). Fire-related traits for plant species of the Mediterranean Basin. Ecology, 90, 1420 Royal Botanic Gardens Kew. (2016). Seed Information Database (SID). Version 7.1. Available from: http://data.kew.org/sid/ (June 2016)

    Limited natural regeneration of unique Scalesia forest following invasive plant removal in Galapagos

    Get PDF
    More than 60% of the flora of the Galapagos Islands is introduced and some of these species have become invasive, severely altering ecosystems. An example of an affected ecosystem is the Scalesia forest, originally dominated by the endemic giant daisy tree Scalesia pedunculata (Asteraceae). The remnant patches of this unique forest are increasingly being invaded by introduced plants, mainly by Rubus niveus (blackberry, Rosaceae). To help large-scale restoration of this ecologically important forest, we seek to better understand the natural regeneration of S. pedunculata after invasive plant control. We monitored naturally recruited S. pedunculata saplings and young trees over five years in an area where invasive plant species are continuously being removed by manual means. We measured survival, height and growth of S. pedunculata saplings and young trees along permanent transects. Percent cover of surrounding plant species and of canopy shade directly above each S. pedunculata individual were determined, as well as distance to the next mature S. pedunculata tree. We identified potential factors influencing initial sapling survival and growth by applying generalized linear models. Results showed a rapid growth of saplings and young trees of up to 0.45 cm per day and a high mortality rate, as is typical for pioneer species like S. pedunculata. Sapling survival, growth and mortality seemed to be influenced by light availability, surrounding vegetation and distance to the next adult S. pedunculata tree. We concluded that natural regeneration of S. pedunculata was high only five months after the last herbicide application but that 95% of these recruits had died over the 5-year period. Further studies are needed to corroborate whether the number of surviving trees is sufficient to replace the aging adult trees and this way maintain remnants of the Scalesia forest. Urgent action is needed to help improve future restoration strategies to prevent further degradation of this rapidly shrinking threatened forest ecosystem

    Graminoid Invasion in an Insular Endemism Hotspot and its Protected Areas

    Get PDF
    Invasive plant species are increasingly altering species composition and the functioning of ecosystems from a local to a global scale. The grass species Pennisetum setaceum has recently raised concerns as an invader on different archipelagos worldwide. Among these affected archipelagos are the Canary Islands, which are a hotspot of endemism. Consequently, conservation managers and stakeholders are interested in the potential spreading of this species in the archipelago. We identify the current extent of the suitable habitat for P. setaceum on the island of La Palma to assess how it affects island ecosystems, protected areas (PAs), and endemic plant species richness. We recorded in situ occurrences of P. setaceum from 2010 to 2018 and compiled additional ones from databases at a 500 m × 500 m resolution. To assess the current suitable habitat and possible distribution patterns of P. setaceum on the island, we built an ensemble model. We projected habitat suitability for island ecosystems and PAs and identified risks for total as well as endemic plant species richness. The suitable habitat for P. setaceum is calculated to cover 34.7% of the surface of La Palma. In open ecosystems at low to mid elevations, where native ecosystems are already under pressure by land use and human activities, the spread of the invader will likely lead to additional threats to endemic plant species. Forest ecosystems (e.g., broadleaved evergreen and coniferous forests) are not likely to be affected by the spread of P. setaceum because of its heliophilous nature. Our projection of suitable habitat of P. setaceum within ecosystems and PAs on La Palma supports conservationists and policymakers in prioritizing management and control measures and acts as an example for the potential threat of this graminoid invader on other islands.This project has received funding from the European Union’s Horizon 2020 research and innovation program ECOPOTENTIAL under grant agreement No 641762. This publication was funded by the German Research Foundation (DFG) and the University of Bayreuth in the funding program Open Access Publishing

    Floristic homogenization of South Pacific islands commenced with human arrival

    No full text
    The increasing similarity of plant species composition among distinct areas is leading to the homogenization of ecosystems globally. Human actions such as ecosystem modification, the introduction of non-native plant species and the extinction or extirpation of endemic and native plant species are considered the main drivers of this trend. However, little is known about when floristic homogenization began or about pre-human patterns of floristic similarity. Here we investigate vegetation trends during the past 5,000 years across the tropical, sub-tropical and warm temperate South Pacific using fossil pollen records from 15 sites on 13 islands within the biogeographical realm of Oceania. The site comparisons show that floristic homogenization has increased over the past 5,000 years. Pairwise Bray–Curtis similarity results also show that when two islands were settled by people in a given time interval, their floristic similarity is greater than when one or neither of the islands were settled. Importantly, higher elevation sites, which are less likely to have experienced human impacts, tended to show less floristic homogenization. While biotic homogenization is often referred to as a contemporary issue, we have identified a much earlier trend, likely driven by human colonization of the islands and subsequent impacts

    Influences of sea level changes and volcanic eruptions on Holocene vegetation in Tonga

    Get PDF
    Here, we investigate Mid- to Late-Holocene vegetation changes in low-lying coastal areas in Tonga and how changing sea levels and recurrent volcanic eruptions have influenced vegetation dynamics on four islands of the Tongan archipelago (South Pacific). To investigate past vegetation and environmental change at Ngofe Marsh (‘Uta Vava’u), we examined palynomorphs (pollen and spores), charcoal (fire), and sediment characteristics (volcanic activity) from a 6.7-m-long sediment core. Radiocarbon dating indicated the sediments were deposited over the last 7700 years. We integrated the Ngofe Marsh data with similar previously published data from Avai’o’vuna Swamp on Pangaimotu Island, Lotofoa Swamp on Foa Island, and Finemui Swamp on Ha’afeva Island. Plant taxa were categorized as littoral, mangrove, rainforest, successional/ disturbance, and wetland groups, and linear models were used to examine relationships between vegetation, relative sea level change, and volcanic eruptions (tephra). We found that relative sea level change has impacted vegetation on three of the four islands investigated. Volcanic eruptions were not identified as a driver of vegetation change. Rainforest decline does not appear to be driven by sea level changes or volcanic eruptions. From all sites analyzed, vegetation at Finemui Swamp was most sensitive to changes in relative sea level. While vegetation on low-lying Pacific islands is sensitive to changing sea levels, island characteristics, such as area and elevation, are also likely to be important factors that mediate specific island responses to drivers of change

    Long-term trajectories of non-native vegetation on islands globally

    Get PDF
    Human-mediated changes in island vegetation are, among others, largely caused by the introduction and establishment of non-native species. However, data on past changes in non-native plant species abundance that predate historical documentation and censuses are scarce. Islands are among the few places where we can track human arrival in natural systems allowing us to reveal changes in vegetation dynamics with the arrival of non-native species. We matched fossil pollen data with botanical status information (native, non-native), and quantified the timing, trajectories and magnitude of non-native plant vegetational change on 29 islands over the past 5000 years. We recorded a proportional increase in pollen of non-native plant taxa within the last 1000 years. Individual island trajectories are context-dependent and linked to island settlement histories. Our data show that non-native plant introductions have a longer and more dynamic history than is generally recognized, with critical implications for biodiversity baselines and invasion biology
    corecore