353 research outputs found
Photospheric Magnetic Field: Relationship Between North-South Asymmetry and Flux Imbalance
Photospheric magnetic fields were studied using the Kitt Peak synoptic maps
for 1976-2003. Only strong magnetic fields (B>100 G) of the equatorial region
were taken into account. The north-south asymmetry of the magnetic fluxes was
considered as well as the imbalance between positive and negative fluxes. The
north-south asymmetry displays a regular alternation of the dominant hemisphere
during the solar cycle: the northern hemisphere dominated in the ascending
phase, the southern one in the descending phase during Solar Cycles 21-23. The
sign of the imbalance did not change during the 11 years from one polar-field
reversal to the next and always coincided with the sign of the Sun's polar
magnetic field in the northern hemisphere. The dominant sign of leading
sunspots in one of the hemispheres determines the sign of the magnetic-flux
imbalance. The sign of the north-south asymmetry of the magnetic fluxes and the
sign of the imbalance of the positive and the negative fluxes are related to
the quarter of the 22-year magnetic cycle where the magnetic configuration of
the Sun remains constant (from the minimum where the sunspot sign changes
according to Hale's law to the magnetic-field reversal and from the reversal to
the minimum). The sign of the north-south asymmetry for the time interval
considered was determined by the phase of the 11-year cycle (before or after
the reversal); the sign of the imbalance of the positive and the negative
fluxes depends on both the phase of the 11-year cycle and on the parity of the
solar cycle. The results obtained demonstrate the connection of the magnetic
fields in active regions with the Sun's polar magnetic field in the northern
hemisphere.Comment: 24 pages, 12 figures, 2 table
A Bayesian Analysis of the Correlations Among Sunspot Cycles
Sunspot numbers form a comprehensive, long-duration proxy of solar activity
and have been used numerous times to empirically investigate the properties of
the solar cycle. A number of correlations have been discovered over the 24
cycles for which observational records are available. Here we carry out a
sophisticated statistical analysis of the sunspot record that reaffirms these
correlations, and sets up an empirical predictive framework for future cycles.
An advantage of our approach is that it allows for rigorous assessment of both
the statistical significance of various cycle features and the uncertainty
associated with predictions. We summarize the data into three sequential
relations that estimate the amplitude, duration, and time of rise to maximum
for any cycle, given the values from the previous cycle. We find that there is
no indication of a persistence in predictive power beyond one cycle, and
conclude that the dynamo does not retain memory beyond one cycle. Based on
sunspot records up to October 2011, we obtain, for Cycle 24, an estimated
maximum smoothed monthly sunspot number of 97 +- 15, to occur in
January--February 2014 +- 6 months.Comment: Accepted for publication in Solar Physic
Response of the solar atmosphere to magnetic field evolution in a coronal hole region
Methods. We study an equatorial CH observed simultaneously by HINODE and
STEREO on July 27, 2007. The HINODE/SP maps are adopted to derive the physical
parameters of the photosphere and to research the magnetic field evolution and
distribution. The G band and Ca II H images with high tempo-spatial resolution
from HINODE/BFI and the multi-wavelength data from STEREO/EUVI are utilized to
study the corresponding atmospheric response of different overlying layers.
Results. We explore an emerging dipole locating at the CH boundary. Mini-scale
arch filaments (AFs) accompanying the emerging dipole were observed with the Ca
II H line. During the separation of the dipolar footpoints, three AFs appeared
and expanded in turn. The first AF divided into two segments in its late stage,
while the second and third AFs erupted in their late stages. The lifetimes of
these three AFs are 4, 6, 10 minutes, and the two intervals between the three
divisions or eruptions are 18 and 12 minutes, respectively. We display an
example of mixed-polarity flux emergence of IN fields within the CH and present
the corresponding chromospheric response. With the increase of the integrated
magnetic flux, the brightness of the Ca II H images exhibits an increasing
trend. We also study magnetic flux cancellations of NT fields locating at the
CH boundary and present the obvious chromospheric and coronal response. We
notice that the brighter regions seen in the 171 A images are relevant to the
interacting magnetic elements. By examining the magnetic NT and IN elements and
the response of different atmospheric layers, we obtain good positive linear
correlations between the NT magnetic flux densities and the brightness of both
G band (correlation coefficient 0.85) and Ca II H (correlation coefficient
0.58).Comment: 9 pages, 9 figures. A&A, in pres
A homogeneous database of sunspot areas covering more than 130 years
The historical record of sunspot areas is a valuable and widely used proxy of
solar activity and variability. The Royal Greenwich Observatory (RGO) regularly
measured this and other parameters between 1874 and 1976. After that time
records from a number of different observatories are available. These, however,
show systematic differences and often have significants gaps. Our goal is to
obtain a uniform and complete sunspot area time series by combining different
data sets. A homogeneus composite of sunspot areas is essential for different
applications in solar physics, among others for irradiance reconstructions.
Data recorded simultaneously at different observatories are statistically
compared in order to determine the intercalibration factors. Using these data
we compile a complete and cross-calibrated time series. The Greenwich data set
is used as a basis until 1976, the Russian data (a compilation of observations
made at stations in the former USSR) between 1977 and 1985 and data compiled by
the USAF network since 1986. Other data sets (Rome, Yunnan, Catania) are used
to fill up the remaining gaps. Using the final sunspot areas record the
Photometric Sunspot Index is calculated. We also show that the use of
uncalibrated sunspot areas data sets can seriously affect the estimate of
irradiance variations. Our analysis implies that there is no basis for the
claim that UV irradiance variations have a much smaller influence on climate
than total solar irradiance variations.Comment: 40 pages, 8 figures; JGR - Space Physics, publishe
Homologous Flares and Magnetic Field Topology in Active Region NOAA 10501 on 20 November 2003
We present and interpret observations of two morphologically homologous
flares that occurred in active region (AR) NOAA 10501 on 20 November 2003. Both
flares displayed four homologous H-alpha ribbons and were both accompanied by
coronal mass ejections (CMEs). The central flare ribbons were located at the
site of an emerging bipole in the center of the active region. The negative
polarity of this bipole fragmented in two main pieces, one rotating around the
positive polarity by ~ 110 deg within 32 hours. We model the coronal magnetic
field and compute its topology, using as boundary condition the magnetogram
closest in time to each flare. In particular, we calculate the location of
quasiseparatrix layers (QSLs) in order to understand the connectivity between
the flare ribbons. Though several polarities were present in AR 10501, the
global magnetic field topology corresponds to a quadrupolar magnetic field
distribution without magnetic null points. For both flares, the photospheric
traces of QSLs are similar and match well the locations of the four H-alpha
ribbons. This globally unchanged topology and the continuous shearing by the
rotating bipole are two key factors responsible for the flare homology.
However, our analyses also indicate that different magnetic connectivity
domains of the quadrupolar configuration become unstable during each flare, so
that magnetic reconnection proceeds differently in both events.Comment: 24 pages, 10 figures, Solar Physics (accepted
Automated Detection of EUV Polar Coronal Holes During Solar Cycle 23
A new method for automated detection of polar coronal holes is presented.
This method, called perimeter tracing, uses a series of 171, 195, and 304 \AA\
full disk images from the Extreme ultraviolet Imaging Telescope (EIT) on SOHO
over solar cycle 23 to measure the perimeter of polar coronal holes as they
appear on the limbs. Perimeter tracing minimizes line-of-sight obscurations
caused by the emitting plasma of the various wavelengths by taking measurements
at the solar limb. Perimeter tracing also allows for the polar rotation period
to emerge organically from the data as 33 days. We have called this the Harvey
rotation rate and count Harvey rotations starting 4 January 1900. From the
measured perimeter, we are then able to fit a curve to the data and derive an
area within the line of best fit. We observe the area of the northern polar
hole area in 1996, at the beginning of solar cycle 23, to be about 4.2% of the
total solar surface area and about 3.6% in 2007. The area of the southern polar
hole is observed to be about 4.0% in 1996 and about 3.4% in 2007. Thus, both
the north and south polar hole areas are no more than 15% smaller now than they
were at the beginning of cycle 23. This compares to the polar magnetic field
measured to be about 40% less now than it was a cycle ago.Comment: 18 pagers, 7 figures, accepted to Solar Physic
Isotopic Composition of Light Nuclei in Cosmic Rays: Results from AMS-01
The variety of isotopes in cosmic rays allows us to study different aspects
of the processes that cosmic rays undergo between the time they are produced
and the time of their arrival in the heliosphere. In this paper we present
measurements of the isotopic ratios 2H/4He, 3He/4He, 6Li/7Li, 7Be/(9Be+10Be)
and 10B/11B in the range 0.2-1.4 GeV of kinetic energy per nucleon. The
measurements are based on the data collected by the Alpha Magnetic
Spectrometer, AMS-01, during the STS-91 flight in 1998 June.Comment: To appear in ApJ. 12 pages, 11 figures, 6 table
A Study of Cosmic Ray Secondaries Induced by the Mir Space Station Using AMS-01
The Alpha Magnetic Spectrometer (AMS-02) is a high energy particle physics
experiment that will study cosmic rays in the to range and will be installed on the International Space Station
(ISS) for at least 3 years. A first version of AMS-02, AMS-01, flew aboard the
space shuttle \emph{Discovery} from June 2 to June 12, 1998, and collected
cosmic ray triggers. Part of the \emph{Mir} space station was within the
AMS-01 field of view during the four day \emph{Mir} docking phase of this
flight. We have reconstructed an image of this part of the \emph{Mir} space
station using secondary and emissions from primary cosmic rays
interacting with \emph{Mir}. This is the first time this reconstruction was
performed in AMS-01, and it is important for understanding potential
backgrounds during the 3 year AMS-02 mission.Comment: To be submitted to NIM B Added material requested by referee. Minor
stylistic and grammer change
Protons in near earth orbit
The proton spectrum in the kinetic energy range 0.1 to 200 GeV was measured
by the Alpha Magnetic Spectrometer (AMS) during space shuttle flight STS-91 at
an altitude of 380 km. Above the geomagnetic cutoff the observed spectrum is
parameterized by a power law. Below the geomagnetic cutoff a substantial second
spectrum was observed concentrated at equatorial latitudes with a flux ~ 70
m^-2 sec^-1 sr^-1. Most of these second spectrum protons follow a complicated
trajectory and originate from a restricted geographic region.Comment: 19 pages, Latex, 7 .eps figure
Cyclosporin A Associated Helicase-Like Protein Facilitates the Association of Hepatitis C Virus RNA Polymerase with Its Cellular Cyclophilin B
BACKGROUND: Cyclosporin A (CsA) is well known as an immunosuppressive drug useful for allogeneic transplantation. It has been reported that CsA inhibits hepatitis C virus (HCV) genome replication, which indicates that cellular targets of CsA regulate the viral replication. However, the regulation mechanisms of HCV replication governed by CsA target proteins have not been fully understood. PRINCIPAL FINDINGS: Here we show a chemical biology approach that elucidates a novel mechanism of HCV replication. We developed a phage display screening to investigate compound-peptide interaction and identified a novel cellular target molecule of CsA. This protein, named CsA associated helicase-like protein (CAHL), possessed RNA-dependent ATPase activity that was negated by treatment with CsA. The downregulation of CAHL in the cells resulted in a decrease of HCV genome replication. CAHL formed a complex with HCV-derived RNA polymerase NS5B and host-derived cyclophilin B (CyPB), known as a cellular cofactor for HCV replication, to regulate NS5B-CyPB interaction. CONCLUSIONS: We found a cellular factor, CAHL, as CsA associated helicase-like protein, which would form trimer complex with CyPB and NS5B of HCV. The strategy using a chemical compound and identifying its target molecule by our phage display analysis is useful to reveal a novel mechanism underlying cellular and viral physiology
- …