3,818 research outputs found

    Quantum dynamics of the Neel vector in the antiferromagnetic molecular wheel CsFe8

    Full text link
    The inelastic neutron scattering (INS) spectrum is studied for the antiferromagnetic molecular wheel CsFe8, in the temperature range 2 - 60 K, and for transfer energies up 3.6 meV. A qualitative analysis shows that the observed peaks correspond to the transitions between the L-band states, from the ground state up to the S = 5 multiplet. For a quantitative analysis, the wheel is described by a microscopic spin Hamiltonian (SH), which includes the nearest-neighbor Heisenberg exchange interactions and uniaxial easy-axis single-ion anisotropy, characterized by the constants J and D, respectively. For a best-fit determination of J and D, the L band is modeled by an effective SH, and the effective SH concept extended such as to facilitate an accurate calculation of INS scattering intensities, overcoming difficulties with the dimension of the Hilbert space. The low-energy magnetism in CsFe8 is excellently described by the generic SH used. The two lowest states are characterized by a tunneling of the Neel vector, as found previously, while the higher-lying states are well described as rotational modes of the Neel vector.Comment: 12 pages, 10 figures, REVTEX4, to appear in PR

    Comment on "Bounding and approximating parabolas for the spectrum of Heisenberg spin systems" by Schmidt, Schnack and Luban

    Full text link
    Recently, Schmidt et al. proved that the energy spectrum of a Heisenberg spin system (HSS) is bounded by two parabolas, i.e. lines which depend on the total spin quantum number S as S(S+1). The prove holds for homonuclear HSSs which fulfill a weak homogenity condition. Moreover, the extremal values of the exact spectrum of various HSS which were studied numerically were found to lie on approximate parabolas, named rotational bands, which could be obtained by a shift of the boundary parabolas. In view of this, it has been claimed that the rotational band structure (RBS) of the energy spectrum is a general behavior of HSSs. Furthermore, since the approximate parabolas are very close to the true boundaries of the spectrum for the examples discussed, it has been claimed that the methods allow to predict the detailed shape of the spectrum and related properties for a general HSS. In this comment I will show by means of examples that the RBS hypothesis is not valid for general HSSs. In particular, weak homogenity is neither a necessary nor a sufficient condition for a HSS to exhibit a spectrum with RBS.Comment: Comments on the work of Schmidt et al, Europhys. Lett. 55, 105 (2001), cond-mat/0101228 (for the reply see cond-mat/0111581). To be published in Europhys. Let

    Classification of Invariant Star Products up to Equivariant Morita Equivalence on Symplectic Manifolds

    Full text link
    In this paper we investigate equivariant Morita theory for algebras with momentum maps and compute the equivariant Picard groupoid in terms of the Picard groupoid explicitly. We consider three types of Morita theory: ring-theoretic equivalence, *-equivalence and strong equivalence. Then we apply these general considerations to star product algebras over symplectic manifolds with a Lie algebra symmetry. We obtain the full classification up to equivariant Morita equivalence.Comment: 28 pages. Minor update, fixed typos

    Improving ocean-glider's payload with a new generation of spectrophotometric PH sensor

    Get PDF
    Ocean gliders have clearly become nowadays useful autonomous platforms addressed to measure a wide range of seawater parameters in a more sustainable and efficient way. This new ocean monitoring approach has implied the need to develop smaller, faster and more efficient sensors without reducing key features like accuracy, resolution, time-response, among others, in order to fit the glider operational capabilities. This work is aiming to present the latest development stages of a new spectrophotometric pH sensor, its integration process into a Wave Glider SV3 platform and the preliminary results derived from an offshore mission performed in subtropical waters between the Canary Islands and Cape Verde archipelagos.Peer Reviewe

    Q-dependence of the inelastic neutron scattering cross section for molecular spin clusters with high molecular symmetry

    Full text link
    For powder samples of polynuclear metal complexes the dependence of the inelastic neutron scattering intensity on the momentum transfer Q is known to be described by a combination of so called interference terms. They reflect the interplay between the geometrical structure of the compound and the spatial properties of the wave functions involved in the transition. In this work, it is shown that the Q-dependence is strongly interrelated with the molecular symmetry of molecular nanomagnets, and, if the molecular symmetry is high enough, is actually completely determined by it. A general formalism connecting spatial symmetry and interference terms is developed. The arguments are detailed for cyclic spin clusters, as experimentally realized by e.g. the octanuclear molecular wheel Cr8, and the star like tetranuclear cluster Fe4.Comment: 8 pages, 1 figures, REVTEX

    Deformation Quantization of a Certain Type of Open Systems

    Full text link
    We give an approach to open quantum systems based on formal deformation quantization. It is shown that classical open systems of a certain type can be systematically quantized into quantum open systems preserving the complete positivity of the open time evolution. The usual example of linearly coupled harmonic oscillators is discussed.Comment: Major update. Improved main statements. 21 page

    Inelastic neutron scattering study and Hubbard model description of the antiferromagnetic tetrahedral molecule Ni4Mo12

    Full text link
    The tetrameric Ni(II) spin cluster Ni4Mo12 has been studied by INS. The data were analyzed extensively in terms of a very general spin Hamiltonian, which includes antiferromagnetic Heisenberg interactions, biquadratic 2-spin and 3-spin interactions, a single-ion magnetic anisotropy, and Dzyaloshinsky-Moriya interactions. Some of the experimentally observed features in the INS spectra could be reproduced, however, one feature at 1.65 meV resisted all efforts. This supports the conclusion that the spin Hamiltonian approach is not adequate to describe the magnetism in Ni4Mo12. The isotropic terms in the spin Hamiltonian can be obtained in a strong-coupling expansion of the Hubbard model at half-filling. Therefore detailed theoretical studies of the Hubbard model were undertaken, using analytical as well as numerical techniques. We carefully analyzed its abilities and restrictions in applications to molecular spin clusters. As a main result it was found that the Hubbard model is also unable to appropriately explain the magnetism in Ni4Mo12. Extensions of the model are also discussed.Comment: 12 pages, 12 figure

    Approximating parabolas as natural bounds of Heisenberg spectra: Reply on the comment of O. Waldmann

    Full text link
    O. Waldmann has shown that some spin systems, which fulfill the condition of a weakly homogeneous coupling matrix, have a spectrum whose minimal or maximal energies are rather poorly approximated by a quadratic dependence on the total spin quantum number. We comment on this observation and provide the new argument that, under certain conditions, the approximating parabolas appear as natural bounds of the spectrum generated by spin coherent states.Comment: 2 pages, accepted for Europhysics Letter

    Exchange-coupling constants, spin density map, and Q dependence of the inelastic neutron scattering intensity in single-molecule magnets

    Full text link
    The Q dependence of the inelastic neutron scattering (INS) intensity of transitions within the ground-state spin multiplet of single-molecule magnets (SMMs) is considered. For these transitions, the Q dependence is related to the spin density map in the ground state, which in turn is governed by the Heisenberg exchange interactions in the cluster. This provides the possibility to infer the exchange-coupling constants from the Q dependence of the INS transitions within the spin ground state. The potential of this strategy is explored for the M = +-10 -> +- 9 transition within the S = 10 multiplet of the molecule Mn12 as an example. The Q dependence is calculated for powder as well as single-crystal Mn12 samples for various exchange-coupling situations discussed in the literature. The results are compared to literature data on a powder sample of Mn12 and to measurements on an oriented array of about 500 single-crystals of Mn12. The calculated Q dependence exhibits significant variation with the exchange-coupling constants, in particular for a single-crystal sample, but the experimental findings did not permit an unambiguous determination. However, although challenging, suitable experiments are within the reach of today's instruments.Comment: 11 pages, 6 figures, REVTEX4, to appear in PR
    corecore