17 research outputs found

    Hot Plasticity of Alpha Beta Alloys

    Get PDF

    The effect of withdrawal rate on crystal structure perfection, microstructure and creep resistance of single crystal castings made of CMSX-4 nickel-based superalloy

    Get PDF
    This study focuses on the evaluation of the crystal structure perfection in the single crystal made of CMSX-4 nickel superalloy and its effect on creep resistance. Single crystal castings were manufactured by directional solidification process at the withdrawal rate of 1, 3, 5 and 7 mm/min. Light (LM) and electron (SEM, TEM) microscopy, X-ray diffraction and Mossbauer spectroscopy were used for evaluation of the microstructure and crystal structure perfection. Castings were also subjected to creep tests. The best creep resistance was obtained for the casting manufactured at the withdrawal rate of 3 mm/min, characterized by the highest crystal structure perfection compared to the other castings examined

    Mechanical thrombectomy in acute stroke – Five years of experience in Poland

    Get PDF
    Objectives Mechanical thrombectomy (MT) is not reimbursed by the Polish public health system. We present a description of 5 years of experience with MT in acute stroke in Comprehensive Stroke Centers (CSCs) in Poland. Methods and results We retrospectively analyzed the results of a structured questionnaire from 23 out of 25 identified CSCs and 22 data sets that include 61 clinical, radiological and outcome measures. Results Most of the CSCs (74%) were founded at University Hospitals and most (65.2%) work round the clock. In 78.3% of them, the working teams are composed of neurologists and neuro-radiologists. All CSCs perform CT and angio-CT before MT. In total 586 patients were subjected to MT and data from 531 of them were analyzed. Mean time laps from stroke onset to groin puncture was 250±99min. 90.3% of the studied patients had MT within 6h from stroke onset; 59.3% of them were treated with IV rt-PA prior to MT; 15.1% had IA rt-PA during MT and 4.7% – emergent stenting of a large vessel. M1 of MCA was occluded in 47.8% of cases. The Solitaire device was used in 53% of cases. Successful recanalization (TICI2b–TICI3) was achieved in 64.6% of cases and 53.4% of patients did not experience hemorrhagic transformation. Clinical improvement on discharge was noticed in 53.7% of cases, futile recanalization – in 30.7%, mRS of 0–2 – in 31.4% and mRS of 6 in 22% of cases. Conclusion Our results can help harmonize standards for MT in Poland according to international guidelines

    Cyclic creep behaviour of two-phase Ti-6Al-2Mo-2Cr alloy

    Get PDF
    One of the important criteria for selection titanium alloys for discs and blades of turbine engine compressor is their fatigue and creep strength at room and elevated temperature. Fatigue and creep properties of two-phase titanium alloys show strong dependence on microstructure, especially morphology of the α and β phases which can be controlled to certain extent by proper selection of hot working and heat treatment conditions. Quantitative description of two-phase titanium alloys behaviour under loading and environmental conditions leading to combined creep and fatigue processes has been always very challenging task due to large number of factors affecting deformation and fracture behaviour of the material. In the course of the research cyclic creep behaviour of Ti-6Al-2Mo-2Cr alloy (VT3-1) was investigated and compared to low-cycle fatigue and static creep properties at the temperature of 450°C. Microstructure of the alloy was varied by means of the heat treatment. Constant load tensile creep tests were carried out. Tension-tension cyclic loading was applied at the constant stress ratio with and without hold time at maximum load. The effect of test parameters on the creep-fatigue life at elevated temperature was estimated. Characteristic features of fracture surfaces were identified by scanning electron microscopy methods

    Cyclic creep behaviour of two-phase Ti-6Al-2Mo-2Cr alloy

    No full text
    One of the important criteria for selection titanium alloys for discs and blades of turbine engine compressor is their fatigue and creep strength at room and elevated temperature. Fatigue and creep properties of two-phase titanium alloys show strong dependence on microstructure, especially morphology of the α and β phases which can be controlled to certain extent by proper selection of hot working and heat treatment conditions. Quantitative description of two-phase titanium alloys behaviour under loading and environmental conditions leading to combined creep and fatigue processes has been always very challenging task due to large number of factors affecting deformation and fracture behaviour of the material. In the course of the research cyclic creep behaviour of Ti-6Al-2Mo-2Cr alloy (VT3-1) was investigated and compared to low-cycle fatigue and static creep properties at the temperature of 450°C. Microstructure of the alloy was varied by means of the heat treatment. Constant load tensile creep tests were carried out. Tension-tension cyclic loading was applied at the constant stress ratio with and without hold time at maximum load. The effect of test parameters on the creep-fatigue life at elevated temperature was estimated. Characteristic features of fracture surfaces were identified by scanning electron microscopy methods

    The effect of plastic deformation on martensite decomposition process in Ti-6Al-4V alloy

    No full text
    Microstructure and mechanical properties of heat treated martensitic two-phase α+β titanium alloys are in major perspective determined by results of martensite decomposition during tempering. The process of martensitic α’(α”) phase decomposition in titanium alloys, although utilized in industry for years, has not been sufficiently characterized in the scientific literature. Especially aspects of plastically deformed martensite decomposition is poorly described. Preliminary research results of water quenched Ti-6Al-4V alloy, subsequently cold deformed in compression and tempered at the temperature range of 600-900ºC for 1 and 2 h indicated that α’(α”) martensite undergoes strain hardening and deformed martensite laths exhibit tendency towards fragmentation and spheroidization during tempering at 900ºC. In the present paper, also α’(α”) martensite decomposition under compressive load applied at the temperature range of 600-900ºC is considered too. Based on light and scanning electron microscopy observations, thermal analyses and XRD measurements, the effect of plastic deformation on kinetics of martensite decomposition and morphology of α phase formed in the process is analysed

    The effect of plastic deformation on martensite decomposition process in Ti-6Al-4V alloy

    Get PDF
    Microstructure and mechanical properties of heat treated martensitic two-phase α+β titanium alloys are in major perspective determined by results of martensite decomposition during tempering. The process of martensitic α’(α”) phase decomposition in titanium alloys, although utilized in industry for years, has not been sufficiently characterized in the scientific literature. Especially aspects of plastically deformed martensite decomposition is poorly described. Preliminary research results of water quenched Ti-6Al-4V alloy, subsequently cold deformed in compression and tempered at the temperature range of 600-900ºC for 1 and 2 h indicated that α’(α”) martensite undergoes strain hardening and deformed martensite laths exhibit tendency towards fragmentation and spheroidization during tempering at 900ºC. In the present paper, also α’(α”) martensite decomposition under compressive load applied at the temperature range of 600-900ºC is considered too. Based on light and scanning electron microscopy observations, thermal analyses and XRD measurements, the effect of plastic deformation on kinetics of martensite decomposition and morphology of α phase formed in the process is analysed
    corecore