594 research outputs found
Development of a SiPM Camera for a Schwarzschild-Couder Cherenkov Telescope for the Cherenkov Telescope Array
We present the development of a novel 11328 pixel silicon photomultiplier
(SiPM) camera for use with a ground-based Cherenkov telescope with
Schwarzschild-Couder optics as a possible medium-sized telescope for the
Cherenkov Telescope Array (CTA). The finely pixelated camera samples air-shower
images with more than twice the optical resolution of cameras that are used in
current Cherenkov telescopes. Advantages of the higher resolution will be a
better event reconstruction yielding improved background suppression and
angular resolution of the reconstructed gamma-ray events, which is crucial in
morphology studies of, for example, Galactic particle accelerators and the
search for gamma-ray halos around extragalactic sources. Packing such a large
number of pixels into an area of only half a square meter and having a fast
readout directly attached to the back of the sensors is a challenging task. For
the prototype camera development, SiPMs from Hamamatsu with through silicon via
(TSV) technology are used. We give a status report of the camera design and
highlight a number of technological advancements that made this development
possible.Comment: 8 pages, 5 figures, In Proceedings of the 34th International Cosmic
Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions
at arXiv:1508.0589
Section on Prospects for Dark Matter Detection of the White Paper on the Status and Future of Ground-Based TeV Gamma-Ray Astronomy
This is a report on the findings of the dark matter science working group for
the white paper on the status and future of TeV gamma-ray astronomy. The white
paper was commissioned by the American Physical Society, and the full white
paper can be found on astro-ph (arXiv:0810.0444). This detailed section
discusses the prospects for dark matter detection with future gamma-ray
experiments, and the complementarity of gamma-ray measurements with other
indirect, direct or accelerator-based searches. We conclude that any
comprehensive search for dark matter should include gamma-ray observations,
both to identify the dark matter particle (through the charac- teristics of the
gamma-ray spectrum) and to measure the distribution of dark matter in galactic
halos.Comment: Report from the Dark Matter Science Working group of the APS
commissioned White paper on ground-based TeV gamma ray astronomy (19 pages, 9
figures
Multiwavelength Observations of 1ES 1959+650, One Year After the Strong Outburst of 2002
In April-May 2003, the blazar 1ES 1959+650 showed an increased level of X-ray
activity. This prompted a multiwavelength observation campaign with the Whipple
10 m gamma-ray telescope, the Rossi X-ray Timing Explorer, the Bordeaux Optical
Observatory, and the University of Michigan Radio Astrophysical Observatory. We
present the multiwavelength data taken from May 2, 2003 to June 7, 2003 and
compare the source characteristics with those measured during observations
taken during the years 2000 and 2002. The X-ray observations gave a data set
with high signal-to-noise light curves and energy spectra; however, the
gamma-ray observations did not reveal a major TeV gamma-ray flare. Furthermore,
we find that the radio and optical fluxes do not show statistically significant
deviations from those measured during the 2002 flaring periods. While the X-ray
flux and X-ray photon index appear correlated during subsequent observations,
the apparent correlation evolved significantly between the years 2000, 2002,
and 2003. We discuss the implications of this finding for the mechanism that
causes the flaring activity.Comment: 17 pages, 6 figures, 2 table
Cosmic-Ray Proton and Helium Spectra from the First CREAM Flight
Cosmic-ray proton and helium spectra have been measured with the
balloon-borne Cosmic Ray Energetics And Mass experiment flown for 42 days in
Antarctica in the 2004-2005 austral summer season. High-energy cosmic-ray data
were collected at an average altitude of ~38.5 km with an average atmospheric
overburden of ~3.9 g cm. Individual elements are clearly separated with
a charge resolution of ~0.15 e (in charge units) and ~0.2 e for protons and
helium nuclei, respectively. The measured spectra at the top of the atmosphere
are represented by power laws with a spectral index of -2.66 0.02 for
protons from 2.5 TeV to 250 TeV and -2.58 0.02 for helium nuclei from 630
GeV/nucleon to 63 TeV/nucleon. They are harder than previous measurements at a
few tens of GeV/nucleon. The helium flux is higher than that expected from the
extrapolation of the power law fitted to the lower-energy data. The relative
abundance of protons to helium nuclei is 9.1 0.5 for the range from 2.5
TeV/nucleon to 63 TeV/nucleon. This ratio is considerably smaller than the
previous measurements at a few tens of GeV/nucleon.Comment: 20 pages, 4 figure
Multiwavelength Observations of Markarian 421 in March 2001: an Unprecedented View on the X-ray/TeV Correlated Variability
(Abridged) We present a detailed analysis of week-long simultaneous
observations of the blazar Mrk421 at 2-60 keV X-rays (RXTE) and TeV gamma-rays
(Whipple and HEGRA) in 2001. The unprecedented quality of this dataset enables
us to establish firmly the existence of the correlation between the TeV and
X-ray luminosities, and to start unveiling some of its more detailed
characteristics, in particular its energy dependence, and time variability. The
source shows strong, highly correlated variations in X-ray and gamma-ray. No
evidence of X-ray/gamma-ray interband lag is found on the full week dataset (<3
ks). However, a detailed analysis of the March 19 flare reveals that data are
not consistent with the peak of the outburst in the 2-4 keV X-ray and TeV band
being simultaneous. We estimate a 2.1+/-0.7 ks TeV lag. The amplitudes of the
X-ray and gamma-ray variations are also highly correlated, and the TeV
luminosity increases more than linearly w.r.t. the X-ray one. The strong
correlation supports the standard model in which a unique electrons population
produces the X-rays by synchrotron radiation and the gamma-ray component by
inverse Compton scattering. However, for the individual best observed flares
the gamma-ray flux scales approximately quadratically w.r.t. the X-ray flux,
posing a serious challenge to emission models for TeV blazars. Rather special
conditions and/or fine tuning of the temporal evolution of the physical
parameters of the emission region are required in order to reproduce the
quadratic correlation.Comment: Correction to authorship. Minor editorial changes to text, figures,
references. 22 pages (emulateapj), 12 figures (47 postscript files) Published
in ApJ, 2008 April 20 (ADS: 2008ApJ...677..906F
- âŠ