570 research outputs found

    Self-similar Bianchi models: I. Class A models

    Full text link
    We present a study of Bianchi class A tilted cosmological models admitting a proper homothetic vector field together with the restrictions, both at the geometrical and dynamical level, imposed by the existence of the simply transitive similarity group. The general solution of the symmetry equations and the form of the homothetic vector field are given in terms of a set of arbitrary integration constants. We apply the geometrical results for tilted perfect fluids sources and give the general Bianchi II self-similar solution and the form of the similarity vector field. In addition we show that self-similar perfect fluid Bianchi VII0_0 models and irrotational Bianchi VI0_0 models do not exist.Comment: 14 pages, Latex; to appear in Classical and Quantum Gravit

    Exacerbation of facial motoneuron loss after facial nerve axotomy in CCR3-deficient mice

    Get PDF
    We have previously demonstrated a neuroprotective mechanism of FMN (facial motoneuron) survival after facial nerve axotomy that is dependent on CD4+ Th2 cell interaction with peripheral antigen-presenting cells, as well as CNS (central nervous system)-resident microglia. PACAP (pituitary adenylate cyclase-activating polypeptide) is expressed by injured FMN and increases Th2-associated chemokine expression in cultured murine microglia. Collectively, these results suggest a model involving CD4+ Th2 cell migration to the facial motor nucleus after injury via microglial expression of Th2-associated chemokines. However, to respond to Th2-associated chemokines, Th2 cells must express the appropriate Th2-associated chemokine receptors. In the present study, we tested the hypothesis that Th2-associated chemokine receptors increase in the facial motor nucleus after facial nerve axotomy at timepoints consistent with significant T-cell infiltration. Microarray analysis of Th2-associated chemokine receptors was followed up with real-time PCR for CCR3, which indicated that facial nerve injury increases CCR3 mRNA levels in mouse facial motor nucleus. Unexpectedly, quantitative- and co-immunofluorescence revealed increased CCR3 expression localizing to FMN in the facial motor nucleus after facial nerve axotomy. Compared with WT (wild-type), a significant decrease in FMN survival 4 weeks after axotomy was observed in CCR3−/− mice. Additionally, compared with WT, a significant decrease in FMN survival 4 weeks after axotomy was observed in Rag2−/− (recombination activating gene-2-deficient) mice adoptively transferred CD4+ T-cells isolated from CCR3−/− mice, but not in CCR3−/− mice adoptively transferred CD4+ T-cells derived from WT mice. These results provide a basis for further investigation into the co-operation between CD4+ T-cell- and CCR3-mediated neuroprotection after FMN injury

    General Relativistic 1+3 Orthonormal Frame Approach Revisited

    Full text link
    The equations of the 1+3 orthonormal frame approach are explicitly presented and discussed. Natural choices of local coordinates are mentioned. A dimensionless formulation is subsequently given. It is demonstrated how one can obtain a number of interesting problems by specializing the general equations. In particular, equation systems for ``silent'' dust cosmological models also containing magnetic Maxwell fields, locally rotationally symmetric spacetime geometries and spatially homogeneous cosmological models are presented. We show that while the 3-Cotton--York tensor is zero for Szekeres dust models, it is nonzero for a generic representative within the ``silent'' class.Comment: 41 pages, uufiles encoded postscript file, submitted to Phys. Rev.

    Exact Hypersurface-Homogeneous Solutions in Cosmology and Astrophysics

    Get PDF
    A framework is introduced which explains the existence and similarities of most exact solutions of the Einstein equations with a wide range of sources for the class of hypersurface-homogeneous spacetimes which admit a Hamiltonian formulation. This class includes the spatially homogeneous cosmological models and the astrophysically interesting static spherically symmetric models as well as the stationary cylindrically symmetric models. The framework involves methods for finding and exploiting hidden symmetries and invariant submanifolds of the Hamiltonian formulation of the field equations. It unifies, simplifies and extends most known work on hypersurface-homogeneous exact solutions. It is shown that the same framework is also relevant to gravitational theories with a similar structure, like Brans-Dicke or higher-dimensional theories.Comment: 41 pages, REVTEX/LaTeX 2.09 file (don't use LaTeX2e !!!) Accepted for publication in Phys. Rev.

    Does zero temperature decide on the nature of the electroweak phase transition?

    Get PDF
    Taking on a new perspective of the electroweak phase transition, we investigate in detail the role played by the depth of the electroweak minimum (“vacuum energy difference”). We find a strong correlation between the vacuum energy difference and the strength of the phase transition. This correlation only breaks down if a negative eigen-value develops upon thermal corrections in the squared scalar mass matrix in the broken vacuum before the critical temperature. As a result the scalar fields slide across field space toward the symmetric vacuum, often causing a significantly weakened phase transition. Phenomenological constraints are found to strongly disfavour such sliding scalar scenarios. For several popular models, we suggest numerical bounds that guarantee a strong first order electroweak phase transition. The zero temperature phenomenology can then be studied in these parameter regions without the need for any finite temperature calculations. For almost all non-supersymmetric models with phenomenologically viable parameter points, we find a strong phase transition is guaranteed if the vacuum energy difference is greater than −8.8 × 107 GeV4. For the GNMSSM, we guarantee a strong phase transition for phenomenologically viable parameter points if the vacuum energy difference is greater than −6.9×107 GeV4. Alternatively, we capture more of the parameter space exhibiting a strong phase transition if we impose a simultaneous bound on the vacuum energy difference and the singlet mass

    Generation of Bianchi type V cosmological models with varying Λ\Lambda-term

    Full text link
    Bianchi type V perfect fluid cosmological models are investigated with cosmological term Λ\Lambda varying with time. Using a generation technique (Camci {\it et al.}, 2001), it is shown that the Einstein's field equations are solvable for any arbitrary cosmic scale function. Solutions for particular forms of cosmic scale functions are also obtained. The cosmological constant is found to be decreasing function of time, which is supported by results from recent type Ia supernovae observations. Some physical aspects of the models are also discussed.Comment: 16 pages, 3 figures, submitted to CJ

    Quasi-Newtonian dust cosmologies

    Get PDF
    Exact dynamical equations for a generic dust matter source field in a cosmological context are formulated with respect to a non-comoving Newtonian-like timelike reference congruence and investigated for internal consistency. On the basis of a lapse function NN (the relativistic acceleration scalar potential) which evolves along the reference congruence according to N˙=αΘN\dot{N} = \alpha \Theta N (α=const\alpha = {const}), we find that consistency of the quasi-Newtonian dynamical equations is not attained at the first derivative level. We then proceed to show that a self-consistent set can be obtained by linearising the dynamical equations about a (non-comoving) FLRW background. In this case, on properly accounting for the first-order momentum density relating to the non-relativistic peculiar motion of the matter, additional source terms arise in the evolution and constraint equations describing small-amplitude energy density fluctuations that do not appear in similar gravitational instability scenarios in the standard literature.Comment: 25 pages, LaTeX 2.09 (10pt), to appear in Classical and Quantum Gravity, Vol. 15 (1998

    Bianchi Type V Viscous Fluid Cosmological Models in Presence of Decaying Vacuum Energy

    Full text link
    Bianchi type V viscous fluid cosmological model for barotropic fluid distribution with varying cosmological term Λ\Lambda is investigated. We have examined a cosmological scenario proposing a variation law for Hubble parameter HH in the background of homogeneous, anisotropic Bianchi type V space-time. The model isotropizes asymptotically and the presence of shear viscosity accelerates the isotropization. The model describes a unified expansion history of the universe indicating initial decelerating expansion and late time accelerating phase. Cosmological consequences of the model are also discussed.Comment: 10 pages, 3 figure

    SHOC2-MRAS-PP1 complex positively regulates RAF activity and contributes to Noonan syndrome pathogenesis

    Get PDF
    Dephosphorylation of the inhibitory “S259” site on RAF kinases (S259 on CRAF, S365 on BRAF) plays a key role in RAF activation. The MRAS GTPase, a close relative of RAS oncoproteins, interacts with SHOC2 and protein phosphatase 1 (PP1) to form a heterotrimeric holoenzyme that dephosphorylates this S259 RAF site. MRAS and SHOC2 function as PP1 regulatory subunits providing the complex with striking specificity against RAF. MRAS also functions as a targeting subunit as membrane localization is required for efficient RAF dephosphorylation and ERK pathway regulation in cells. SHOC2’s predicted structure shows remarkable similarities to the A subunit of PP2A, suggesting a case of convergent structural evolution with the PP2A heterotrimer. We have identified multiple regions in SHOC2 involved in complex formation as well as residues in MRAS switch I and the interswitch region that help account for MRAS’s unique effector specificity for SHOC2–PP1. MRAS, SHOC2, and PPP1CB are mutated in Noonan syndrome, and we show that syndromic mutations invariably promote complex formation with each other, but not necessarily with other interactors. Thus, Noonan syndrome in individuals with SHOC2, MRAS, or PPPC1B mutations is likely driven at the biochemical level by enhanced ternary complex formation and highlights the crucial role of this phosphatase holoenzyme in RAF S259 dephosphorylation, ERK pathway dynamics, and normal human development
    corecore