2,271 research outputs found

    Analytical method for designing grating compensated dispersion-managed soliton systems

    Get PDF
    This paper was published in Journal of Optical Society of America B and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://www.opticsinfobase.org/abstract.cfm?URI=JOSAB-21-4-706. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law. © 2004 The Optical Society.Peer reviewedPublisher PD

    Suppression and Enhancement of Soliton Switching During Interaction in Periodically Twisted Birefringent Fiber

    Get PDF
    Soliton interaction in periodically twisted birefringent optical fibers has been analysed analytically with refernce to soliton switching. For this purpose we construct the exact general two-soliton solution of the associated coupled system and investigate its asymptotic behaviour. Using the results of our analytical approach we point out that the interaction can be used as a switch to suppress or to enhance soliton switching dynamics, if one injects multi-soliton as an input pulse in the periodically twisted birefringent fiber.Comment: 10 pages, 4 figures, Latex, submitted to Phys. Rev.

    Simultaneous Combination and Nearly Self-similar Pulse Compression of Five Pulses at Different Wavelengths

    Get PDF
    Acknowledgment This work was supported by Shenzhen Technology and Innovation Council (Project GJHZ20180411185015272), Youth Science and Technology Innovation Talent of Guangdong Province (Project 2019TQ05X227) and research startup fund. K. Nakkeeran likes to acknowledge the Binks Trust Fund for this collaborative research project work.Peer reviewedPostprin

    Combination and Compression of Multiple Optical Pulses in Nonlinear Fibers with the Exponentially Decreasing Dispersion

    Get PDF
    ACKNOWLEDGMENT This work was supported by the National Natural Science Foundation of China (No. Project 61675008).Peer reviewedPostprin

    Eckhaus Instability in Laser Cavities with Harmonically Swept Filters

    Get PDF
    This work was supported in part by National Key R&D Program of China (2019YFB1803904), in part by Science, Technology and Innovation Commission of Shenzhen Municipality (SGDX2019081623060558), in part by Research Grants Council, University Grants Committee of Hong Kong SAR (PolyU152241/18E), and in part by Guangdong Basic and Applied Basic Research Foundation (2021A1515012544) (Corresponding author: Dongmei Huang).Peer reviewedPostprin

    Dynamics of Solitons and Quasisolitons of Cubic Third-Order Nonlinear Schr\"odinger Equation

    Full text link
    The dynamics of soliton and quasisoliton solutions of cubic third order nonlinear Schr\"{o}dinger equation is studied. The regular solitons exist due to a balance between the nonlinear terms and (linear) third order dispersion; they are not important at small α3\alpha_3 (α3\alpha_3 is the coefficient in the third derivative term) and vanish at α30\alpha_3 \to 0. The most essential, at small α3\alpha_3, is a quasisoliton emitting resonant radiation (resonantly radiating soliton). Its relationship with the other (steady) quasisoliton, called embedded soliton, is studied analytically and in numerical experiments. It is demonstrated that the resonantly radiating solitons emerge in the course of nonlinear evolution, which shows their physical significance

    Comparison of fiber-based Sagnac interferometers for self-switching of optical pulses

    Get PDF
    Abstract Self-switching of ultrashort optical pulses in a gain-distributed nonlinear amplifying fiber loop mirror (NALM) is investigated numerically in the soliton regime. Switching characteristics of this device is compared to those of the nonlinear optical loop mirror (NOLM) and the conventional NALM that uses a lumped gain. We show that, as compared with the NOLM or the conventional NALM, the gain-distributed NALM can produce higher-quality pulses and permits more efficient pulse compression. We also show that the gain-distributed NALM has several advantages over the conventional NALM such as sharpened switching edges, flattened switching peak, and robustness to gain variations
    corecore