943 research outputs found
Information Systems and Assemblages
International audienceThe theme for the 2014 IFIP WG 8.2 working conference was ‘Information Systems and Global Assemblages: (Re)Configuring Actors, Artefacts, Organizations’. The motivation behind the choice of the conference theme has been the increasing appreciation of notions of emergence, heterogeneity and temporality in IS studies. We found that the conference provided an opportune occasion for inviting scholars interested in exploring these notions, their relevance and promise for IS studies. The concept of the ‘assemblage’ [1], already referenced in IS studies, as will be discussed below, and with significant popularity in other fields, such as anthropology, geography and cultural studies, provided the stepping stone for approaching the heterogeneous, emergent and situated nature of information systems and organization. In particular, we opted for highlighting the ‘global assemblage’[2] as a metaphor to talk about challenging yet often creative tensions that emerge as global imperatives (geographical, intellectual, procedural and others) interact with local arrangements of actors, artefacts and organizations. Here ‘global’ does not mean universal or everywhere, but mobile, abstractable, and capable of recontextualization across diverse social and cultural situations.This book provides a collection of contributions by scholars who responded to our invitation, adding depth and breadth to our understanding of the concept and its value for IS studies. At the same time, some contributors chose to discuss emergence, heterogeneity and situatedness in different terms, drawing upon alternative theoretical traditions and concepts. The result has been an engaging and stimulating mix of ideas that points towards the ‘multiple’ trajectories - current and future - of this exciting stream of research
Radio Bursts Associated with Flare and Ejecta in the 13 July 2004 Event
We investigate coronal transients associated with a GOES M6.7 class flare and
a coronal mass ejection (CME) on 13 July 2004. During the rising phase of the
flare, a filament eruption, loop expansion, a Moreton wave, and an ejecta were
observed. An EIT wave was detected later on. The main features in the radio
dynamic spectrum were a frequency-drifting continuum and two type II bursts.
Our analysis shows that if the first type II burst was formed in the low
corona, the burst heights and speed are close to the projected distances and
speed of the Moreton wave (a chromospheric shock wave signature). The
frequency-drifting radio continuum, starting above 1 GHz, was formed almost two
minutes prior to any shock features becoming visible, and a fast-expanding
piston (visible as the continuum) could have launched another shock wave. A
possible scenario is that a flare blast overtook the earlier transient, and
ignited the first type II burst. The second type II burst may have been formed
by the same shock, but only if the shock was propagating at a constant speed.
This interpretation also requires that the shock-producing regions were located
at different parts of the propagating structure, or that the shock was passing
through regions with highly different atmospheric densities. This complex
event, with a multitude of radio features and transients at other wavelengths,
presents evidence for both blast-wave-related and CME-related radio emissions.Comment: 14 pages, 6 figures; Solar Physics Topical Issue, in pres
Formation and control of electron molecules in artificial atoms: Impurity and magnetic-field effects
Interelectron interactions and correlations in quantum dots can lead to
spontaneous symmetry breaking of the self-consistent mean field resulting in
formation of Wigner molecules. With the use of spin-and-space unrestricted
Hartree-Fock (sS-UHF) calculations, such symmetry breaking is discussed for
field-free conditions, as well as under the influence of an external magnetic
field. Using as paradigms impurity-doped (as well as the limiting case of
clean) two-electron quantum dots (which are analogs to helium-like atoms), it
is shown that the interplay between the interelectron repulsion and the
electronic zero-point kinetic energy leads, for a broad range of impurity
parameters, to formation of a singlet ground-state electron molecule,
reminiscent of the molecular picture of doubly-excited helium. Comparative
analysis of the conditional probability distributions for the sS-UHF and the
exact solutions for the ground state of two interacting electrons in a clean
parabolic quantum dot reveals that both of them describe formation of an
electron molecule with similar characteristics. The self-consistent field
associated with the triplet excited state of the two-electron quantum dot
(clean as well as impurity-doped) exhibits symmetry breaking of the Jahn-Teller
type, similar to that underlying formation of nonspherical open-shell nuclei
and metal clusters. Furthermore, impurity and/or magnetic-field effects can be
used to achieve controlled manipulation of the formation and pinning of the
discrete orientations of the Wigner molecules. Impurity effects are futher
illustrated for the case of a quantum dot with more than two electrons.Comment: Latex/Revtex, 10 pages with 4 gif figures. Small changes to explain
the difference between Wigner and Jahn-Teller electron molecules. A complete
version of the paper with high quality figures inside the text is available
at http://shale.physics.gatech.edu/~costas/qdhelium.html For related papers,
see http://www.prism.gatech.edu/~ph274c
Particle acceleration in three-dimensional tearing configurations
In three-dimensional electromagnetic configurations that result from unstable
resistive tearing modes particles can efficiently be accelerated to
relativistic energies. To prove this resistive magnetohydrodynamic simulations
are used as input configurations for successive test particle simulations. The
simulations show the capability of three-dimensional non-linearly evolved
tearing modes to accelerate particles perpendicular to the plane of the
reconnecting magnetic field components. The simulations differ considerably
from analytical approaches by involving a realistic three-dimensional electric
field with a non-homogenous component parallel to the current direction. The
resulting particle spectra exhibit strong pitch-angle anisotropies. Typically,
about 5-8 % of an initially Maxwellian distribution is accelerated to the
maximum energy levels given by the macroscopic generalized electric potential
structure. Results are shown for both, non-relativistic particle acceleration
that is of interest, e.g., in the context of auroral arcs and solar flares, and
relativistic particle energization that is relevant, e.g., in the context of
active galactic nuclei.Comment: Physics of Plasmas, in prin
Unidentified gamma-ray sources off the Galactic plane as low-mass microquasars?
A subset of the unidentified EGRET gamma-ray sources with no active galactic
nucleus or other conspicuous counterpart appears to be concentrated at medium
latitudes. Their long-term variability and their spatial distribution indicate
that they are distinct from the more persistent sources associated with the
nearby Gould Belt. They exhibit a large scale height of 1.3 +/- 0.6 kpc above
the Galactic plane. Potential counterparts for these sources include
microquasars accreting from a low-mass star and spewing a continuous jet.
Detailed calculations have been performed of the jet inverse Compton emission
in the radiation fields from the star, the accretion disc, and a hot corona.
Different jet Lorentz factors, powers, and aspect angles have been explored.
The up-scattered emission from the corona predominates below 100 MeV whereas
the disc and stellar contributions are preponderant at higher energies for
moderate (~15 deg) and small (~1 deg) aspect angles, respectively. Yet, unlike
in the high-mass, brighter versions of these systems, the external Compton
emission largely fails to produce the luminosities required for 5 to 10 kpc
distant EGRET sources. Synchrotron-self-Compton emission appears as a promising
alternative.Comment: 11 pages, 5 figures. Contributed paper to the "Multiwavelength
Approach to Unidentified Gamma-Ray Sources", Eds. K.S. Cheng & G.E. Romero,
to appear in Astrophysics and Space Science journa
How Many CMEs Have Flux Ropes? Deciphering the Signatures of Shocks, Flux Ropes, and Prominences in Coronagraph Observations of CMEs
We intend to provide a comprehensive answer to the question on whether all
Coronal Mass Ejections (CMEs) have flux rope structure. To achieve this, we
present a synthesis of the LASCO CME observations over the last sixteen years,
assisted by 3D MHD simulations of the breakout model, EUV and coronagraphic
observations from STEREO and SDO, and statistics from a revised LASCO CME
database. We argue that the bright loop often seen as the CME leading edge is
the result of pileup at the boundary of the erupting flux rope irrespective of
whether a cavity or, more generally, a 3-part CME can be identified. Based on
our previous work on white light shock detection and supported by the MHD
simulations, we identify a new type of morphology, the `two-front' morphology.
It consists of a faint front followed by diffuse emission and the bright
loop-like CME leading edge. We show that the faint front is caused by density
compression at a wave (or possibly shock) front driven by the CME. We also
present high-detailed multi-wavelength EUV observations that clarify the
relative positioning of the prominence at the bottom of a coronal cavity with
clear flux rope structure. Finally, we visually check the full LASCO CME
database for flux rope structures. In the process, we classify the events into
two clear flux rope classes (`3-part', `Loop'), jets and outflows (no clear
structure). We find that at least 40% of the observed CMEs have clear flux rope
structures. We propose a new definition for flux rope CMEs (FR-CMEs) as a
coherent magnetic, twist-carrying coronal structure with angular width of at
least 40 deg and able to reach beyond 10 Rsun which erupts on a time scale of a
few minutes to several hours. We conclude that flux ropes are a common
occurrence in CMEs and pose a challenge for future studies to identify CMEs
that are clearly not FR-CMEs.Comment: 26 pages, 9 figs, to be published in Solar Physics Topical Issue
"Flux Rope Structure of CMEs
The First VERITAS Telescope
The first atmospheric Cherenkov telescope of VERITAS (the Very Energetic
Radiation Imaging Telescope Array System) has been in operation since February
2005. We present here a technical description of the instrument and a summary
of its performance. The calibration methods are described, along with the
results of Monte Carlo simulations of the telescope and comparisons between
real and simulated data. The analysis of TeV -ray observations of the
Crab Nebula, including the reconstructed energy spectrum, is shown to give
results consistent with earlier measurements. The telescope is operating as
expected and has met or exceeded all design specifications.Comment: Accepted by Astroparticle Physic
Colossal dielectric constants in transition-metal oxides
Many transition-metal oxides show very large ("colossal") magnitudes of the
dielectric constant and thus have immense potential for applications in modern
microelectronics and for the development of new capacitance-based
energy-storage devices. In the present work, we thoroughly discuss the
mechanisms that can lead to colossal values of the dielectric constant,
especially emphasising effects generated by external and internal interfaces,
including electronic phase separation. In addition, we provide a detailed
overview and discussion of the dielectric properties of CaCu3Ti4O12 and related
systems, which is today's most investigated material with colossal dielectric
constant. Also a variety of further transition-metal oxides with large
dielectric constants are treated in detail, among them the system La2-xSrxNiO4
where electronic phase separation may play a role in the generation of a
colossal dielectric constant.Comment: 31 pages, 18 figures, submitted to Eur. Phys. J. for publication in
the Special Topics volume "Cooperative Phenomena in Solids: Metal-Insulator
Transitions and Ordering of Microscopic Degrees of Freedom
Active Galactic Nuclei at the Crossroads of Astrophysics
Over the last five decades, AGN studies have produced a number of spectacular
examples of synergies and multifaceted approaches in astrophysics. The field of
AGN research now spans the entire spectral range and covers more than twelve
orders of magnitude in the spatial and temporal domains. The next generation of
astrophysical facilities will open up new possibilities for AGN studies,
especially in the areas of high-resolution and high-fidelity imaging and
spectroscopy of nuclear regions in the X-ray, optical, and radio bands. These
studies will address in detail a number of critical issues in AGN research such
as processes in the immediate vicinity of supermassive black holes, physical
conditions of broad-line and narrow-line regions, formation and evolution of
accretion disks and relativistic outflows, and the connection between nuclear
activity and galaxy evolution.Comment: 16 pages, 5 figures; review contribution; "Exploring the Cosmic
Frontier: Astrophysical Instruments for the 21st Century", ESO Astrophysical
Symposia Serie
Measurement of Atmospheric Neutrino Oscillations with the ANTARES Neutrino Telescope
The data taken with the ANTARES neutrino telescope from 2007 to 2010, a total
live time of 863 days, are used to measure the oscillation parameters of
atmospheric neutrinos. Muon tracks are reconstructed with energies as low as 20
GeV. Neutrino oscillations will cause a suppression of vertical upgoing muon
neutrinos of such energies crossing the Earth. The parameters determining the
oscillation of atmospheric neutrinos are extracted by fitting the event rate as
a function of the ratio of the estimated neutrino energy and reconstructed
flight path through the Earth. Measurement contours of the oscillation
parameters in a two-flavour approximation are derived. Assuming maximum mixing,
a mass difference of eV is
obtained, in good agreement with the world average value.Comment: 9 pages, 5 figure
- …