1,160 research outputs found

    MYB-NFIB fusion transcript in adenoid cystic carcinoma : current state of knowledge and future directions

    Get PDF
    Adenoid cystic carcinoma (ACC) is the most common type of salivary gland cancer that can also arise in other primary sites. Regardless of the site, most ACC cases carry a recurrent chromosomal translocation - t(6;9)(q22–23;p23–24) - involving the MYB oncogene and the NFIB transcription factor. Generally, a long sequence of MYB is fused to the terminal exons of NFIB, yet the break can occur in different exons for both genes, resulting in multiple chimeric variants. The fusion status can be determined by a number of methods, each of them with particular advantages. In vitro and in vivo studies have been conducted to understand the biological consequences of MYB-NFIB translocation, and such findings could contribute to improving the current inefficient therapeutic options for disseminated ACC. This review provides a discussion on relevant evidence in the context of ACC MYB-NFIB translocations to determine the current state of knowledge and discuss future directions

    Comparison of the Neutrophil Proteome in Trauma Patients and Normal Controls

    Get PDF
    Background: Neutrophils have an impressive array of microbicidal weapons, and in the presence of a pathogen, progress from a quiescent state in the bloodstream to a completely activated state. Failure to regulate this activation, for example, when the blood is flooded with cytokines after severe trauma, causes inappropriate neutrophil activation that paradoxically, is associated with tissue and organ damage. Acidic proteomic maps of quiescent human neutrophils were analyzed and compared to those of activated neutrophils from severe trauma patients. The analysis revealed 114 spots whose measured volumes differed between activated and quiescent neutrophils, with 27 upregulated and 87 downregulated in trauma conditions. Among the identified proteins, grancalcin, S100-A9 and CACNB2 reinforce observed correlations between motility and ion flux, ANXA3, SNAP, FGD1 and Zfyve19 are involved in vesicular transport and exocytosis, and GSTP1, HSPA1 HSPA1L, MAOB, UCH-L5, and PPA1 presented evidence that activated neutrophils may have diminished protection against oxidative damage and are prone to apoptosis. These are discussed, along with proteins involved in cytoskeleton reorganization, reactive oxygen species production, and ion flux. Proteins such as Zfyve19, MAOB and albumin- like protein were described for the first time in the neutrophil. In this work we achieved the identification of several proteins potentially involved in inflammatory signaling after trauma, as well as proteins described for the first time in neutrophils

    Measurement of B(GT)/B(F) for the Anomalous 35-Ar β+ Decay via the (p,n) Reaction

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY 87-1440

    Spin Transfer Measurements for (p,n) Reactions at Intermediate Energy

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY 87-1440

    Weak Interaction Matrix Elements and (p,n) Cross Sections

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY-931478

    Small-polaron hopping conductivity in bilayer manganite La1.2_{1.2}Sr1.8_{1.8}Mn2_{2}O7_{7}

    Full text link
    We report anisotropic resistivity measurements on a La1.2_{1.2}Sr1.8_{1.8}Mn2_{2}O7_{7} single crystal over a temperature TT range from 2 to 400 K and in magnetic fields HH up to 14 T. For T218T\geq 218 K, the temperature dependence of the zero-field in-plane ρab(T)\rho_{ab}(T) resistivity obeys the adiabatic small polaron hopping mechanism, while the out-of-plane ρc(T)\rho_{c}(T) resistivity can be ascribed by an Arrhenius law with the same activation energy. Considering the magnetic character of the polarons and the close correlation between the resistivity and magnetization, we developed a model which allows the determination of ρab,c(H,T)\rho_{ab,c}(H,T). The excellent agreement of the calculations with the measurements indicates that small polarons play an essential role in the electrical transport properties in the paramagnetic phase of bilayer manganites.Comment: 4 pages, 3 figures, to appear in Physical Review

    Precision Electroweak Data and Unification of Couplings in Warped Extra Dimensions

    Full text link
    Warped extra dimensions allow a novel way of solving the hierarchy problem, with all fundamental mass parameters of the theory naturally of the order of the Planck scale. The observable value of the Higgs vacuum expectation value is red-shifted, due to the localization of the Higgs field in the extra dimension. It has been recently observed that, when the gauge fields propagate in the bulk, unification of the gauge couplings may be achieved. Moreover, the propagation of fermions in the bulk allows for a simple solution to potentially dangerous proton decay problems. However, bulk gauge fields and fermions pose a phenomenological challenge, since they tend to induce large corrections to the precision electroweak observables. In this article, we study in detail the effect of gauge and fermion fields propagating in the bulk in the presence of gauge brane kinetic terms compatible with gauge coupling unification, and we present ways of obtaining a consistent description of experimental data, while allowing values of the first Kaluza Klein mode masses of the order of a few TeV.Comment: 32 pages, 7 figures. References adde

    TrkB-targeted therapy for mucoepidermoid carcinoma

    Get PDF
    The brain-derived neurotrophic factor (BDNF)/tyrosine receptor kinase B (TrkB) pathway was previously associated with key oncogenic outcomes in a number of adenocarcinomas. The aim of our study was to determine the role of this pathway in mucoepidermoid carcinoma (MEC). Three MEC cell lines (UM-HMC-2, H253 and H292) were exposed to Cisplatin, the TrkB inhibitor, ANA-12 and a combination of these drugs. Ultrastructural changes were assessed through transmission electron microscopy; scratch and Transwell assays were used to assess migration and invasion; and a clonogenic assay and spheroid-forming assay allowed assessment of survival and percentage of cancer stem cells (CSC). Changes in cell ultrastructure demonstrated Cisplatin cytotoxicity, while the effects of ANA-12 were less pronounced. Both drugs, used individually and in combination, delayed MEC cell migration, invasion and survival. ANA-12 significantly reduced the number of CSC, but the Cisplatin effect was greater, almost eliminating this cell population in all MEC cell lines. Interestingly, the spheroid forming capacity recovered, following the combination therapy, as compared to Cisplatin alone. Our studies allowed us to conclude that the TrkB inhibition, efficiently impaired MEC cell migration, invasion and survival in vitro, however, the decrease in CSC number, following the combined treatment of ANA-12 and Cisplatin, was less than that seen with Cisplatin alone; this represents a limiting factor

    Unidentified gamma-ray sources off the Galactic plane as low-mass microquasars?

    Get PDF
    A subset of the unidentified EGRET gamma-ray sources with no active galactic nucleus or other conspicuous counterpart appears to be concentrated at medium latitudes. Their long-term variability and their spatial distribution indicate that they are distinct from the more persistent sources associated with the nearby Gould Belt. They exhibit a large scale height of 1.3 +/- 0.6 kpc above the Galactic plane. Potential counterparts for these sources include microquasars accreting from a low-mass star and spewing a continuous jet. Detailed calculations have been performed of the jet inverse Compton emission in the radiation fields from the star, the accretion disc, and a hot corona. Different jet Lorentz factors, powers, and aspect angles have been explored. The up-scattered emission from the corona predominates below 100 MeV whereas the disc and stellar contributions are preponderant at higher energies for moderate (~15 deg) and small (~1 deg) aspect angles, respectively. Yet, unlike in the high-mass, brighter versions of these systems, the external Compton emission largely fails to produce the luminosities required for 5 to 10 kpc distant EGRET sources. Synchrotron-self-Compton emission appears as a promising alternative.Comment: 11 pages, 5 figures. Contributed paper to the "Multiwavelength Approach to Unidentified Gamma-Ray Sources", Eds. K.S. Cheng & G.E. Romero, to appear in Astrophysics and Space Science journa

    Surface preparation of powder metallurgical tool steels by means of wire electrical discharge machining

    Get PDF
    The surface of two types of powder metallurgical (PM) tool steels (i.e., with and without nitrogen) was prepared using wire electrical discharge machining (WEDM). From each grade of tool steel, seven surfaces corresponding to one to seven passes of WEDM were prepared. The WEDM process was carried out using a brass wire as electrode and deionized water as dielectric. After eachWEDM pass the surface of the tool steels was thoroughly examined. Surface residual stresses were measured by the X-ray diffraction (XRD) technique. The measured stresses were found to be of tensile nature. The surface roughness of the WEDM specimens was measured using interference microscopy. The surface roughness as well as the residual stress measurements indicated an insignificant improvement of these parameters after four passes of WEDM. In addition, the formed recast layer was characterized by means of scanning electron microscopy (SEM), XRD, and X-ray photoelectron spectroscopy (XPS). The characterization investigation clearly shows diffusion of copper and zinc from the wire electrode into the work material, even after the final WEDM step. Finally, the importance of eliminating excessive WEDM steps is thoroughly discussed
    corecore