58,435 research outputs found
A study of local and non-local spatial densities in quantum field theory
We use a one-dimensional model system to compare the predictions of two
different 'yardsticks' to compute the position of a particle from its quantum
field theoretical state. Based on the first yardstick (defined by the
Newton-Wigner position operator), the spatial density can be arbitrarily narrow
and its time-evolution is superluminal for short time intervals. Furthermore,
two spatially distant particles might be able to interact with each other
outside the light cone, which is manifested by an asymmetric spreading of the
spatial density. The second yardstick (defined by the quantum field operator)
does not permit localized states and the time evolution is subluminal.Comment: 29 pages, 3 figure
Durable solid lubricant coatings for foil gas bearings to 315 deg C
The durability and friction characteristics of bonded solid lubricant films on compliant gas bearings were measured. Coating compositions, which were judged to be suitable for use to at least 315 C, were selected for this study. Most of the data were obtained with polyimide-bonded graphite fluoride coatings and with silicate-bonded graphite coatings. These coatings were applied to the bore of Inconel 750 foil bearings. The journals were A286 stainless steel, with a rms surface finish of 0.2 microns. The foils were subjected to repeated start/stop cycles under a 14 kPa (2 psi) bearing unit load. Sliding contact occurred during lift-off and coast down at surface velocities less than 6 m/s (3000 rpm). Testing continued until 9000 cycles were accumulated or until a rise in starting torque indicated that the coating had failed. The coatings were evaluated in the temperature range from 25 C to 315 C. Comparisons in coating performance as well as discussions of their properties and methods of application are given
Upgraded automotive gas turbine engine design and development program, volume 2
Results are presented for the design and development of an upgraded engine. The design incorporated technology advancements which resulted from development testing on the Baseline Engine. The final engine performance with all retro-fitted components from the development program showed a value of 91 HP at design speed in contrast to the design value of 104 HP. The design speed SFC was 0.53 versus the goal value of 0.44. The miss in power was primarily due to missing the efficiency targets of small size turbomachinery. Most of the SFC deficit was attributed to missed goals in the heat recovery system relative to regenerator effectiveness and expected values of heat loss. Vehicular fuel consumption, as measured on a chassis dynamometer, for a vehicle inertia weight of 3500 lbs., was 15 MPG for combined urban and highway driving cycles. The baseline engine achieved 8 MPG with a 4500 lb. vehicle. Even though the goal of 18.3 MPG was not achieved with the upgraded engine, there was an improvement in fuel economy of 46% over the baseline engine, for comparable vehicle inertia weight
Baseline automotive gas turbine engine development program
Tests results on a baseline engine are presented to document the automotive gas turbine state-of-the-art at the start of the program. The performance characteristics of the engine and of a vehicle powered by this engine are defined. Component improvement concepts in the baseline engine were evaluated on engine dynamometer tests in the complete vehicle on a chassis dynamometer and on road tests. The concepts included advanced combustors, ceramic regenerators, an integrated control system, low cost turbine material, a continuously variable transmission, power-turbine-driven accessories, power augmentation, and linerless insulation in the engine housing
Effects of silver and group 2 fluorides addition to plasma sprayed chromium carbide high temperature solid lubricant for foil gas bearing to 650 deg C
A new self-lubricating coating composition of nickel aluminide-bonded chromium carbide formulated with silver and Group II fluorides was developed in a research program on high temperature solid lubricants. One of the proposed applications for this new coating composition is as a wide temperature spectrum solid lubricant for complaint foil gas bearings. Friction and wear properties were obtained using a foil gas bearing start/stop apparatus at temperatures from 25 to 650 C. The journals were Inconel 718. Some were coated with the plasma sprayed experimental coating, others with unmodified nickel aluminide/chromium carbide as a baseline for comparison. The addtitional components were provided to assist in achieving low friction over the temperature range of interest. Uncoated, preoxidized Inconel X-750 foil bearings were operated against these surfaces. The foils were subjected to repeated start/stop cycles under a 14-kPa (2-psi) bearing unit loading. Sliding contact occurred during lift-off and coastdown at surface velocities less than 6 m/s (3000 rpm). Testing continued until 9000 start/stop cycles were accumulated or until a rise in starting torque indicated the journal/bearing had failed. Comparison in coating performance as well as discussions of their properties and methods of application are given
Conceptual design study of an improved automotive gas turbine powertrain
Automotive gas turbine concepts with significant technological advantages over the spark ignition (SI) engine were assessed. Possible design concepts were rated with respect to fuel economy and near-term application. A program plan which outlines the development of the improved gas turbine (IGT) concept that best met the goals and objectives of the study identifies the research and development work needed to meet the goal of entering a production engineering phase by 1983. The fuel economy goal is to show at least a 20% improvement over a conventional 1976 SI engine/vehicle system. On the basis of achieving the fuel economy goal, of overall suitability to mechanical design, and of automotive mass production cost, the powertrain selected was a single-shaft engine with a radial turbine and a continuously variable transmission (CVT). Design turbine inlet temperature was 1150 C. Reflecting near-term technology, the turbine rotor would be made of an advanced superalloy, and the transmission would be a hydromechanical CVT. With successful progress in long-lead R&D in ceramic technology and the belt-drive CVT, the turbine inlet temperature would be 1350 C to achieve near-maximum fuel economy
A Program for the Collection, Storage, and Analysis of Baseline Environmental Data for Cook Inlet, Alaska
The scope of this report is to provide a general, yet comprehensive,
description of the Cook Inlet System which will serve as a
basis for understanding the interrelated natural and man-made factors
governing its future; to present a program of field research studies
for the estuarine environment that will describe the existing state of
the Inlet with respect to the water quality and biota; to provide a
framework whereby the program of studies can be evaluated and redirected
in light of the preliminary results; and, to provide a method of storing
and analyzing the data from the investigations so that it can be made
available to interested parties in the most efficient manner possible.This report was prepared by the Institute of Water Resources of the
University of Alaska for the Alaska Water Laboratory, Federal Water
Pollution Control Administration under Contract No. 14-12-449
Inverter ratio failure detector
A failure detector which detects the failure of a dc to ac inverter is disclosed. The inverter under failureless conditions is characterized by a known linear relationship of its input and output voltages and by a known linear relationship of its input and output currents. The detector includes circuitry which is responsive to the detector's input and output voltages and which provides a failure-indicating signal only when the monitored output voltage is less by a selected factor, than the expected output voltage for the monitored input voltage, based on the known voltages' relationship. Similarly, the detector includes circuitry which is responsive to the input and output currents and provides a failure-indicating signal only when the input current exceeds by a selected factor the expected input current for the monitored output current based on the known currents' relationship
Loss of purity by wave packet scattering at low energies
We study the quantum entanglement produced by a head-on collision between two
gaussian wave packets in three-dimensional space. By deriving the two-particle
wave function modified by s-wave scattering amplitudes, we obtain an
approximate analytic expression of the purity of an individual particle. The
loss of purity provides an indicator of the degree of entanglement. In the case
the wave packets are narrow in momentum space, we show that the loss of purity
is solely controlled by the ratio of the scattering cross section to the
transverse area of the wave packets.Comment: 7 pages, 1 figur
Advanced gearbox technology
An advanced 13,000 HP, counterrotating (CR) gearbox was designed and successfully tested to provide a technology base for future designs of geared propfan propulsion systems for both commercial and military aircraft. The advanced technology CR gearbox was designed for high efficiency, low weight, long life, and improved maintainability. The differential planetary CR gearbox features double helical gears, double row cylindrical roller bearings integral with planet gears, tapered roller prop support bearings, and a flexible ring gear and diaphragm to provide load sharing. A new Allison propfan back-to-back gearbox test facility was constructed. Extensive rotating and stationary instrumentation was used to measure temperature, strain, vibration, deflection and efficiency under representative flight operating conditions. The tests verified smooth, efficient gearbox operation. The highly-instrumented advanced CR gearbox was successfully tested to design speed and power (13,000 HP), and to a 115 percent overspeed condition. Measured CR gearbox efficiency was 99.3 percent at the design point based on heat loss to the oil. Tests demonstrated low vibration characteristics of double helical gearing, proper gear tooth load sharing, low stress levels, and the high load capacity of the prop tapered roller bearings. Applied external prop loads did not significantly affect gearbox temperature, vibration, or stress levels. Gearbox hardware was in excellent condition after the tests with no indication of distress
- …