100 research outputs found
Encoding CSP into CCS
We study encodings from CSP into asynchronous CCS with name passing and
matching, so in fact, the asynchronous pi-calculus. By doing so, we discuss two
different ways to map the multi-way synchronisation mechanism of CSP into the
two-way synchronisation mechanism of CCS. Both encodings satisfy the criteria
of Gorla except for compositionality, as both use an additional top-level
context. Following the work of Parrow and Sj\"odin, the first encoding uses a
centralised coordinator and establishes a variant of weak bisimilarity between
source terms and their translations. The second encoding is decentralised, and
thus more efficient, but ensures only a form of coupled similarity between
source terms and their translations.Comment: In Proceedings EXPRESS/SOS 2015, arXiv:1508.0634
Fault-Tolerant Multiparty Session Types (Technical Report)
Multiparty session types are designed to abstractly capture the structure of
communication protocols and verify behavioural properties. One important such
property is progress, i.e., the absence of deadlock. Distributed algorithms
often resemble multiparty communication protocols. But proving their
properties, in particular termination that is closely related to progress, can
be elaborate. Since distributed algorithms are often designed to cope with
faults, a first step towards using session types to verify distributed
algorithms is to integrate fault-tolerance.
We extend multiparty session types to cope with system failures such as
unreliable communication and process crashes. Moreover, we augment the
semantics of processes by failure patterns that can be used to represent system
requirements (as, e.g., failure detectors). To illustrate our approach we
analyse a variant of the well-known rotating coordinator algorithm by Chandra
and Toueg. This technical report presents the proofs and some additional
material to extend [30]
FTMPST: Fault-Tolerant Multiparty Session Types
Multiparty session types are designed to abstractly capture the structure of
communication protocols and verify behavioural properties. One important such
property is progress, i.e., the absence of deadlock. Distributed algorithms
often resemble multiparty communication protocols. But proving their
properties, in particular termination that is closely related to progress, can
be elaborate. Since distributed algorithms are often designed to cope with
faults, a first step towards using session types to verify distributed
algorithms is to integrate fault-tolerance. We extend multiparty session types
to cope with system failures such as unreliable communication and process
crashes. Moreover, we augment the semantics of processes by failure patterns
that can be used to represent system requirements (as, e.g., failure
detectors). To illustrate our approach we analyse a variant of the well-known
rotating coordinator algorithm by Chandra and Toueg
Oral administration of dextran sodium sulphate induces a caecum-localized colitis in rabbits
Trichuris suis ova (TSO) have shown promising results in the treatment of inflammatory bowel disease (IBD) but the mechanisms which underlies this therapeutic effect cannot be studied in mice and rats as T. suis fails to colonize the rodent intestine, whilst hatching in humans and rabbits. As a suitable rabbit IBD model is currently not available, we developed a rabbit colitis model by administration of dextran sodium sulphate (DSS). White Himalayan rabbits (n = 12) received 0.1% DSS in the daily water supply for five days. Clinical symptoms were monitored daily, and rabbits were sacrificed at different time points. A genomewide expression analysis was performed with RNA isolated from caecal lamina propria mononuclear cells (LPMC) and intestinal epithelial cells (IEC). The disease activity index of DSS rabbits increased up to 2.1 ± 0.4 (n = 6) at day 10 (controls <0.5). DSS induced a caecum-localized pathology with crypt architectural distortion, stunted villous surface and inflammatory infiltrate in the lamina propria. The histopathology score reached a peak of 14.2 ± 4.9 (n = 4) at day 10 (controls 7.7 ± 0.9, n = 5). Expression profiling revealed an enrichment of IBD-related genes in both LPMC and IEC. Innate inflammatory response, Th17 signalling and chemotaxis were among the pathways affected significantly. We describe a reproducible and reliable rabbit model of DSS colitis. Localization of the inflammation in the caecum and its similarities to IBD make this model particularly suitable to study TSO therapy in vivo
Deep weathering in the semi-arid Coastal Cordillera, Chile
The weathering front is the boundary beneath Earth’s surface where pristine rock is converted into weathered rock. It is the base of the “critical zone”, in which the lithosphere, biosphere, and atmosphere interact. Typically, this front is located no more than 20 m deep in granitoid rock in humid climate zones. Its depth and the degree of rock weathering are commonly linked to oxygen transport and fluid flow. By drilling into fractured igneous rock in the semi-arid climate zone of the Coastal Cordillera in Chile we found multiple weathering fronts of which the deepest is 76 m beneath the surface. Rock is weathered to varying degrees, contains core stones, and strongly altered zones featuring intensive iron oxidation and high porosity. Geophysical borehole measurements and chemical weathering indicators reveal more intense weathering where fracturing is extensive, and porosity is higher than in bedrock. Only the top 10 m feature a continuous weathering gradient towards the surface. We suggest that tectonic preconditioning by fracturing provided transport pathways for oxygen to greater depths, inducing porosity by oxidation. Porosity was preserved throughout the weathering process, as secondary minerals were barely formed due to the low fluid flow
Prospects of Bioenergy Cropping Systems for A More Social-Ecologically Sound Bioeconomy
The growing bioeconomy will require a greater supply of biomass in the future for both bioenergy and bio-based products. Today, many bioenergy cropping systems (BCS) are suboptimal due to either social-ecological threats or technical limitations. In addition, the competition for land between bioenergy-crop cultivation, food-crop cultivation, and biodiversity conservation is expected to increase as a result of both continuous world population growth and expected severe climate change effects. This study investigates how BCS can become more social-ecologically sustainable in future. It brings together expert opinions from the fields of agronomy, economics, meteorology, and geography. Potential solutions to the following five main requirements for a more holistically sustainable supply of biomass are summarized: (i) bioenergy-crop cultivation should provide a beneficial social-ecological contribution, such as an increase in both biodiversity and landscape aesthetics, (ii) bioenergy crops should be cultivated on marginal agricultural land so as not to compete with food-crop production, (iii) BCS need to be resilient in the face of projected severe climate change effects, (iv) BCS should foster rural development and support the vast number of small-scale family farmers, managing about 80% of agricultural land and natural resources globally, and (v) bioenergy-crop cultivation must be planned and implemented systematically, using holistic approaches. Further research activities and policy incentives should not only consider the economic potential of bioenergy-crop cultivation, but also aspects of biodiversity, soil fertility, and climate change adaptation specific to site conditions and the given social context. This will help to adapt existing agricultural systems in a changing world and foster the development of a more social-ecologically sustainable bioeconomy
Titanium dioxide nanoparticles exacerbate DSS-induced colitis: role of the NLRP3 inflammasome
OBJECTIVE: Western lifestyle and diet are major environmental factors playing a role in the development of IBD. Titanium dioxide (TiO2) nanoparticles are widely used as food additives or in pharmaceutical formulations and are consumed by millions of people on a daily basis. We investigated the effects of TiO2 in the development of colitis and the role of the nucleotide-binding oligomerisation domain receptor, pyrin domain containing (NLRP)3 inflammasome.
DESIGN: Wild-type and NLRP3-deficient mice with dextran sodium sulfate-induced colitis were orally administered with TiO2 nanoparticles. The proinflammatory effects of TiO2 particles in cultured human intestinal epithelial cells (IECs) and macrophages were also studied, as well as the ability of TiO2 crystals to traverse IEC monolayers and accumulate in the blood of patients with IBD using inductively coupled plasma mass spectrometry.
RESULTS: Oral administration of TiO2 nanoparticles worsened acute colitis through a mechanism involving the NLRP3 inflammasome. Importantly, crystals were found to accumulate in spleen of TiO2-administered mice. In vitro, TiO2 particles were taken up by IECs and macrophages and triggered NLRP3-ASC-caspase-1 assembly, caspase-1 cleavage and the release of NLRP3-associated interleukin (IL)-1β and IL-18. TiO2 also induced reactive oxygen species generation and increased epithelial permeability in IEC monolayers. Increased levels of titanium were found in blood of patients with UC having active disease.
CONCLUSION: These findings indicate that individuals with a defective intestinal barrier function and pre-existing inflammatory condition, such as IBD, might be negatively impacted by the use of TiO2 nanoparticles
- …