38 research outputs found

    Cops and Robbers on diameter two graphs

    Full text link
    In this short paper we study the game of Cops and Robbers, played on the vertices of some fixed graph GG of order nn. The minimum number of cops required to capture a robber is called the cop number of GG. We show that the cop number of graphs of diameter 2 is at most 2n\sqrt{2n}, improving a recent result of Lu and Peng by a constant factor. We conjecture that this bound is still not optimal, and obtain some partial results towards the optimal bound.Comment: 5 page

    Tilings in randomly perturbed dense graphs

    Get PDF
    A perfect HH-tiling in a graph GG is a collection of vertex-disjoint copies of a graph HH in GG that together cover all the vertices in GG. In this paper we investigate perfect HH-tilings in a random graph model introduced by Bohman, Frieze and Martin in which one starts with a dense graph and then adds mm random edges to it. Specifically, for any fixed graph HH, we determine the number of random edges required to add to an arbitrary graph of linear minimum degree in order to ensure the resulting graph contains a perfect HH-tiling with high probability. Our proof utilises Szemer\'edi's Regularity lemma as well as a special case of a result of Koml\'os concerning almost perfect HH-tilings in dense graphs.Comment: 19 pages, to appear in CP

    Completion and deficiency problems

    Full text link
    Given a partial Steiner triple system (STS) of order nn, what is the order of the smallest complete STS it can be embedded into? The study of this question goes back more than 40 years. In this paper we answer it for relatively sparse STSs, showing that given a partial STS of order nn with at most r≤εn2r \le \varepsilon n^2 triples, it can always be embedded into a complete STS of order n+O(r)n+O(\sqrt{r}), which is asymptotically optimal. We also obtain similar results for completions of Latin squares and other designs. This suggests a new, natural class of questions, called deficiency problems. Given a global spanning property P\mathcal{P} and a graph GG, we define the deficiency of the graph GG with respect to the property P\mathcal{P} to be the smallest positive integer tt such that the join G∗KtG\ast K_t has property P\mathcal{P}. To illustrate this concept we consider deficiency versions of some well-studied properties, such as having a KkK_k-decomposition, Hamiltonicity, having a triangle-factor and having a perfect matching in hypergraphs. The main goal of this paper is to propose a systematic study of these problems; thus several future research directions are also given
    corecore