232 research outputs found
An analysis of chaining in multi-label classification
The idea of classifier chains has recently been introduced as a promising technique for multi-label classification. However, despite being intuitively appealing and showing strong performance in empirical studies, still very little is known about the main principles underlying this type of method. In this paper, we provide a detailed probabilistic analysis of classifier chains from a risk minimization perspective, thereby helping to gain a better understanding of this approach. As a main result, we clarify that the original chaining method seeks to approximate the joint mode of the conditional distribution of label vectors in a greedy manner. As a result of a theoretical regret analysis, we conclude that this approach can perform quite poorly in terms of subset 0/1 loss. Therefore, we present an enhanced inference procedure for which the worst-case regret can be upper-bounded far more tightly. In addition, we show that a probabilistic variant of chaining, which can be utilized for any loss function, becomes tractable by using Monte Carlo sampling. Finally, we present experimental results confirming the validity of our theoretical findings
Aleatoric and Epistemic Uncertainty in Machine Learning: An Introduction to Concepts and Methods
The notion of uncertainty is of major importance in machine learning and
constitutes a key element of machine learning methodology. In line with the
statistical tradition, uncertainty has long been perceived as almost synonymous
with standard probability and probabilistic predictions. Yet, due to the
steadily increasing relevance of machine learning for practical applications
and related issues such as safety requirements, new problems and challenges
have recently been identified by machine learning scholars, and these problems
may call for new methodological developments. In particular, this includes the
importance of distinguishing between (at least) two different types of
uncertainty, often referred to as aleatoric and epistemic. In this paper, we
provide an introduction to the topic of uncertainty in machine learning as well
as an overview of attempts so far at handling uncertainty in general and
formalizing this distinction in particular.Comment: 59 page
Exact and efficient top-K inference for multi-target prediction by querying separable linear relational models
Many complex multi-target prediction problems that concern large target
spaces are characterised by a need for efficient prediction strategies that
avoid the computation of predictions for all targets explicitly. Examples of
such problems emerge in several subfields of machine learning, such as
collaborative filtering, multi-label classification, dyadic prediction and
biological network inference. In this article we analyse efficient and exact
algorithms for computing the top- predictions in the above problem settings,
using a general class of models that we refer to as separable linear relational
models. We show how to use those inference algorithms, which are modifications
of well-known information retrieval methods, in a variety of machine learning
settings. Furthermore, we study the possibility of scoring items incompletely,
while still retaining an exact top-K retrieval. Experimental results in several
application domains reveal that the so-called threshold algorithm is very
scalable, performing often many orders of magnitude more efficiently than the
naive approach
Linear filtering reveals false negatives in species interaction data
Species interaction datasets, often represented as sparse matrices, are usually collected through observation studies targeted at identifying species interactions. Due to the extensive required sampling effort, species interaction datasets usually contain many false negatives, often leading to bias in derived descriptors. We show that a simple linear filter can be used to detect false negatives by scoring interactions based on the structure of the interaction matrices. On 180 different datasets of various sizes, sparsities and ecological interaction types, we found that on average in about 75% of the cases, a false negative interaction got a higher score than a true negative interaction. Furthermore, we show that this filter is very robust, even when the interaction matrix contains a very large number of false negatives. Our results demonstrate that unobserved interactions can be detected in species interaction datasets, even without resorting to information about the species involved
- …