1,556 research outputs found

    Recent advances in understanding mammalian prion structure

    Get PDF
    Prions are lethal pathogens, which cause fatal neurodegenerative diseases in mammals. They are unique infectious agents and are composed of self-propagating multi-chain assemblies of misfolded host-encoded prion protein (PrP). Understanding prion structure is fundamental to understanding prion disease pathogenesis however to date, the high-resolution structure of authentic ex vivo infectious prions remains unknown. Advances in determining prion structure have been severely impeded by the difficulty in recovering relatively homogeneous prion particles from infected brain and definitively associating infectivity with the PrP assembly state. Recently, however, images of highly infectious ex vivo PrP rods that produce prion-strain specific disease phenotypes in mice have been obtained using cryo-electron microscopy and atomic force microscopy. These images have provided the most detailed description of ex vivo mammalian prions reported to date and have established that prions isolated from multiple strains have a common hierarchical structure. Misfolded PrP is assembled into 20 nm wide rods containing two fibers, each with double helical repeating substructure, separated by a characteristic central gap 8-10 nm in width. Irregularly structured material with adhesive properties distinct to that of the fibers is present within the central gap of the rod. Prions are clearly distinguishable from non-infectious recombinant PrP fibrils generated in vitro and from all other propagating protein structures so far described in other neurodegenerative diseases. The basic architecture of mammalian prions appears to be exceptional and fundamental to their lethal pathogenicity

    1980 peanut disease control guide

    Get PDF
    The Oklahoma Cooperative Extension Service periodically issues revisions to its publications. The most current edition is made available. For access to an earlier edition, if available for this title, please contact the Oklahoma State University Library Archives by email at [email protected] or by phone at 405-744-6311

    Variation of plagioclase shape with size in intermediate magmas : a window into incipient plagioclase crystallisation

    Get PDF
    This work was funded by UK Natural Environment Research Council grant NE/T000430/1.Volcanic rocks commonly display complex textures acquired both in the magma reservoir and during ascent to the surface. While variations in mineral compositions, sizes and number densities are routinely analysed to reconstruct pre-eruptive magmatic histories, crystal shapes are often assumed to be constant, despite experimental evidence for the sensitivity of crystal habit to magmatic conditions. Here, we develop a new program (ShapeCalc) to calculate 3D shapes from 2D crystal intersection data and apply it to study variations of crystal shape with size for plagioclase microlites (l 5–10 µm) show progressively more tabular habits. Crystal growth modelling and experimental constraints indicate that this trend reflects shape evolution during plagioclase growth, with initial growth as prismatic rods and subsequent preferential overgrowth of the intermediate dimension to form tabular shapes. Because overgrowth of very small crystals can strongly affect the external morphology, plagioclase microlite shapes are dependent on the available growth volume per crystal, which decreases during decompression-driven crystallisation as crystal number density increases. Our proposed growth model suggests that the range of crystal shapes developed in a magma is controlled by the temporal evolution of undercooling and total crystal numbers, i.e., distinct cooling/decompression paths. For example, in cases of slow to moderate magma ascent rates and quasi-continuous nucleation, early-formed crystals grow larger and develop tabular shapes, whereas late-stage nucleation produces smaller, prismatic crystals. In contrast, rapid magma ascent may suppress nucleation entirely or, if stalled at shallow depth, may produce a single nucleation burst associated with tabular crystal shapes. Such variation in crystal shapes have diagnostic value and are also an important factor to consider when constructing CSDs and models involving magma rheology.Peer reviewe

    Very high rotational frequencies and band termination in 73Br

    Get PDF
    Rotational bands in 73Br have been investigated up to spins of 65/2 using the EUROBALL III spectrometer. One of the negative-parity bands displays the highest rotational frequency 1.85 MeV reported to date in nuclei with mass number greater than 25. At high frequencies, the experimental dynamic moment of inertia for all bands decrease to very low values, indicating a loss of collectivity. The bands are described in the configuration-dependent cranked Nilsson-Strutinsky model. The calculations indicate that one of the negative-parity bands is observed up to its terminating single-particle state at spin 63/2. This result establishes the first band termination case in the A = 70 mass region.Comment: 6 pages, 6 figures, submitted to Phys. Rev. C as a Rapid Communicatio

    The GREAT triggerless total data readout method

    Get PDF
    Recoil decay tagging (RDT) is a very powerful method for the spectroscopy of exotic nuclei. RDT is a delayed coincidence technique between detectors usually at the target position and at the focal plane of a spectrometer. Such measurements are often limited by dead time. This paper describes a novel triggerless data acquisition method, which is being developed for the Gamma Recoil Electron Alpha Tagging (GREAT) spectrometer, that overcomes this limitation by virtually eliminating dead time. Our solution is a total data readout (TDR) method where all channels run independently and are associated in software to reconstruct events. The TDR method allows all the data from both target position and focal plane to be collected with practically no dead-time losses. Each data word is associated with a timestamp generated from a global 100-MHz clock. Events are then reconstructed in real time in the event builder using temporal and spatial associations defined by the physics of the experimen

    A new light at the end of the tunnel: fiber gas discharge lasers

    Full text link
    Optical fibers have emerged as a transformative platform for building better and more robust solid state lasers. However, the wavelengths available to these lasers are limited. Using hollow core optical fibers allows us to add gases as new potential gain media for fiber lasers, and also liberates the gas laser from the limits normally imposed by diffraction. To demonstrate the new technology, we present a fiber laser at 3500 nm wavelength, using an antiresonant guiding hollow core optical fiber containing neutral xenon atoms pumped by an afterglow discharge of a helium-xenon mixture within a fiber of over 1 m in length. Laser action is confirmed through observation of polarization dependence, mode pulling and mode beating. Our results unlock a new breed of flexible fiber lasers operating at a plethora of wavelengths, many previous unavailable.Comment: 10 page
    • …
    corecore