162 research outputs found

    Evidence for an abundant old population of Galactic ultra long period magnetars and implications for fast radio bursts

    Full text link
    Two recent discoveries, namely PSR J0901-4046 and GLEAM-X J162759.5-523504.3 (hereafter GLEAM-X J1627), have corroborated an extant population of radio-loud periodic sources with long periods (76 s and 1091 s respectively) whose emission can hardly be explained by rotation losses. We argue that GLEAM-X J1627 is a highly-magnetized object consistent with a magnetar (an ultra long period magnetar - ULPM), and demonstrate it is unlikely to be either a magnetically or a rotationally-powered white dwarf. By studying these sources together with previously detected objects, we find there are at least a handful of promising candidates for Galactic ULPMs. The detections of these objects imply a substantial number, N≳13000N \gtrsim 13000 and N≳500N \gtrsim 500 for PSR J0901--4046 like and GLEAM-X J1627 like objects, respectively, within our Galaxy. These source densities, as well as cooling age limits from non-detection of thermal X-rays, Galactic offsets, timing stability and dipole spindown limits, all imply the ULPM candidates are substantially older than confirmed Galactic magnetars and that their formation channel is a common one. Their existence implies widespread survival of magnetar-like fields for several Myr, distinct from the inferred behaviour in confirmed Galactic magnetars. ULPMs may also constitute a second class of FRB progenitors which could naturally exhibit very long periodic activity windows. Finally, we show that existing radio campaigns are biased against detecting objects like these and discuss strategies for future radio and X-ray surveys to identify more such objects. We estimate that O(100){\cal O}(100) more such objects should be detected with SKA-MID and DSA-2000.Comment: 22 pages, 10 figures. Published in MNRA

    Radio pulsations from the γ\gamma-ray millisecond pulsar PSR J2039-5617

    Get PDF
    The predicted nature of the candidate redback pulsar 3FGL\,J2039.6−-5618 was recently confirmed by the discovery of γ\gamma-ray millisecond pulsations (Clark et al. 2020, hereafter Paper\,I), which identify this γ\gamma-ray source as \msp. We observed this object with the Parkes radio telescope in 2016 and 2019. We detect radio pulsations at 1.4\,GHz and 3.1\,GHz, at the 2.6ms period discovered in γ\gamma-rays, and also at 0.7\,GHz in one 2015 archival observation. In all bands, the radio pulse profile is characterised by a single relatively broad peak which leads the main γ\gamma-ray peak. At 1.4\,GHz we found clear evidence of eclipses of the radio signal for about half of the orbit, a characteristic phenomenon in redback systems, which we associate with the presence of intra-binary gas. From the dispersion measure of 24.57±0.0324.57\pm0.03\,pc\,cm−3^{-3} we derive a pulsar distance of 0.9±0.20.9\pm 0.2\,kpc or 1.7±0.71.7\pm0.7\,kpc, depending on the assumed Galactic electron density model. The modelling of the radio and γ\gamma-ray light curves leads to an independent determination of the orbital inclination, and to a determination of the pulsar mass, qualitatively consistent to the results in Paper\,I.Comment: 18 pages, accepted for publication on MNRA

    Neutrinos, Cosmic Rays and the MeV Band

    Get PDF
    The possible association of the blazar TXS 0506+056 with a high-energy neutrino detected by IceCube holds the tantalizing potential to answer three astrophysical questions: 1. Where do high-energy neutrinos originate? 2. Where are cosmic rays produced and accelerated? 3. What radiation mechanisms produce the high-energy {\gamma}-rays in blazars? The MeV gamma-ray band holds the key to these questions, because it is an excellent proxy for photo-hadronic processes in blazar jets, which also produce neutrino counterparts. Variability in MeV gamma-rays sheds light on the physical conditions and mechanisms that take place in the particle acceleration sites in blazar jets. In addition, hadronic blazar models also predict a high level of polarization fraction in the MeV band, which can unambiguously distinguish the radiation mechanism. Future MeV missions with a large field of view, high sensitivity, and polarization capabilities will play a central role in multi-messenger astronomy, since pointed, high-resolution telescopes will follow neutrino alerts only when triggered by an all-sky instrument.Comment: White paper submitted to the Astro2020 Decadal Surve

    The high energy X-ray probe (HEX-P): magnetars and other isolated neutron stars

    Get PDF
    © 2024 The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/The hard X-ray emission from magnetars and other isolated neutron stars remains under-explored. An instrument with higher sensitivity to hard X-rays is critical to understanding the physics of neutron star magnetospheres and also the relationship between magnetars and Fast Radio Bursts (FRBs). High sensitivity to hard X-rays is required to determine the number of magnetars with hard X-ray tails, and to track transient non-thermal emission from these sources for years post-outburst. This sensitivity would also enable previously impossible studies of the faint non-thermal emission from middle-aged rotation-powered pulsars (RPPs), and detailed phase-resolved spectroscopic studies of younger, bright RPPs. The High Energy X-ray Probe (HEX-P) is a probe-class mission concept that will combine high spatial resolution X-ray imaging ( < 5 arcsec half-power diameter (HPD) at 0.2–25 keV) and broad spectral coverage (0.2–80 keV) with a sensitivity superior to current facilities (including XMM-Newton and NuSTAR). HEX-P has the required timing resolution to perform follow-up observations of sources identified by other facilities and positively identify candidate pulsating neutron stars. Here we discuss how HEX-P is ideally suited to address important questions about the physics of magnetars and other isolated neutron stars.Peer reviewe

    Prospects for Pulsar Studies at MeV Energies

    Get PDF
    Enabled by the Fermi Large Area Telescope, we now know that pulsars fill the gamma-ray sky, and we are beginning to understand their emission mechanism and their distribution throughout the Galaxy. To address key questions calls for a sensitive, wide-field MeV telescope, which can detect the population of MeV-peaked pulsars hinted at by Fermi
    • …
    corecore