41 research outputs found

    Regression of albuminuria and its association with incident cardiovascular outcomes and mortality in type 1 diabetes: the FinnDiane Study

    Get PDF
    Aims/hypothesis Our aim was to assess regression of albuminuria and its clinical consequences in type 1 diabetes. Methods The analysis included 3642 participants from the Finnish Diabetic Nephropathy (FinnDiane) Study with a 24 h urine sample and a history of albuminuria available at baseline. A total of 2729 individuals had normal AER, 438 a history of microalbuminuria and 475 a history of macroalbuminuria. Regression was defined as a change from a higher category of albuminuria pre-baseline to a lower category in two out of the three most recent urine samples at baseline. The impact of regression on cardiovascular events (myocardial infarction, stroke, coronary procedure) and mortality was analysed over a follow-up of 14.0 years (interquartile range 11.9-15.9). Results In total, 102 (23.3%) individuals with prior microalbuminuria and 111 (23.4%) with prior macroalbuminuria had regressed at baseline. For individuals with normal AER as a reference, the age-adjusted HRs (95% CI) for cardiovascular events were 1.42 (0.75, 2.68) in individuals with regression from microalbuminuria, 2.62 (1.95, 3.54) in individuals with sustained microalbuminuria, 3.15 (2.02, 4.92) in individuals with regression from macroalbuminuria and 5.49 (4.31, 7.00) in individuals with sustained macroalbuminuria. Furthermore, for all-cause and cardiovascular mortality rates, HRs in regressed individuals were comparable with those with sustained renal status at the achieved level (i.e. those who did not regress but remained at the most advanced level of albuminuria noted pre-baseline). Conclusions/interpretation Progression of diabetic nephropathy confers an increased risk for cardiovascular disease and premature death. Notably, regression reduces the risk to the same level as for those who did not progress.Peer reviewe

    Through the labyrinth of yesteryears

    Get PDF
    Background Allergy to dog (Canis familiaris) is a worldwide common cause of asthma and allergic rhinitis. However, dander extract in routine diagnostics is not an optimal predictor of IgE-mediated dog allergy. Our objective was to evaluate saliva as an allergen source for improved diagnostics of allergy to dog. Methods IgE-binding proteins in dog saliva and dander extract were analysed by immunoblot and mass spectrometry (LC-MS/MS) using pooled or individual sera from dog-allergic patients (n=13). Sera from 59 patients IgE positive to dander and 55 patients IgE negative to dander but with symptoms to dog were analysed for IgE against saliva and dander by ELISA. Basophil stimulation with dog saliva and dander extract was measured by flow cytometry among three dog-allergic patients. Additionally, IgE-binding protein profiles of saliva from different breeds were investigated by immunoblot. Results Greater number and diversity of IgE-binding proteins was found in saliva compared to dander extract and varied among dog breeds. In saliva, Can f 1, 2, 3 and 6 were identified but also four new saliva allergen candidates. The majority of the 59 dog danderpositive sera (n=44) were IgE positive to dog saliva. Among patients IgE negative to dander, but with symptoms to dog, 20% were IgE positive to saliva. The biological activity of saliva was confirmed by basophil degranulation. Conclusions Dog saliva is an allergen source for improved diagnostics of dog allergy. The IgE-binding protein profile of saliva from different dogs varies.Supplementary material: [http://cherry.chem.bg.ac.rs/handle/123456789/3488

    Association of dietary sodium intake with atherogenesis in experimental diabetes and with cardiovascular disease in patients with Type 1 diabetes

    Get PDF
    Abstract It is recommended that individuals with diabetes restrict their dietary sodium intake. However, although salt intake is correlated with BP (blood pressure), it also partly determines the activation state of the RAAS (reninangiotensin-aldosterone system), a key mediator of diabetes-associated atherosclerosis. apoE KO (apolipoprotein E knockout) mice were allocated for the induction of diabetes with streptozotocin or citrate buffer (controls) and further randomized to isocaloric diets containing 0.05 %, 0.3 % or 3.1 % sodium with or without the ACEi [ACE (angiotensin-converting enzyme) inhibitor] perindopril. After 6 weeks of study, plaque accumulation was quantified and markers of atherogenesis were assessed using RT-PCR (reverse transcription-PCR) and ELISA. The association of sodium intake and adverse cardiovascular and mortality outcomes were explored in 2648 adults with Type 1 diabetes without prior CVD (cardiovascular disease) from the FinnDiane study. A 0.05 % sodium diet was associated with increased plaque accumulation in diabetic apoE KO mice, associated with activation of the RAAS. By contrast, a diet containing 3.1 % sodium suppressed atherogenesis associated with suppression of the RAAS, with an efficacy comparable with ACE inhibition. In adults with Type 1 diabetes, low sodium intake was also associated with an increased risk of all-cause mortality and new-onset cardiovascular events. However, high sodium intake was also associated with adverse outcomes, leading to a J-shaped relationship overall. Although BP lowering is an important goal for the management of diabetes, off-target actions to activate the RAAS may contribute to an observed lack of protection from cardiovascular complications in patients with Type 1 diabetes with low sodium intake

    A Genome-Wide Association Study of Diabetic Kidney Disease in Subjects With Type 2 Diabetes

    Get PDF
    dentification of sequence variants robustly associated with predisposition to diabetic kidney disease (DKD) has the potential to provide insights into the pathophysiological mechanisms responsible. We conducted a genome-wide association study (GWAS) of DKD in type 2 diabetes (T2D) using eight complementary dichotomous and quantitative DKD phenotypes: the principal dichotomous analysis involved 5,717 T2D subjects, 3,345 with DKD. Promising association signals were evaluated in up to 26,827 subjects with T2D (12,710 with DKD). A combined T1D+T2D GWAS was performed using complementary data available for subjects with T1D, which, with replication samples, involved up to 40,340 subjects with diabetes (18,582 with DKD). Analysis of specific DKD phenotypes identified a novel signal near GABRR1 (rs9942471, P = 4.5 x 10(-8)) associated with microalbuminuria in European T2D case subjects. However, no replication of this signal was observed in Asian subjects with T2D or in the equivalent T1D analysis. There was only limited support, in this substantially enlarged analysis, for association at previously reported DKD signals, except for those at UMOD and PRKAG2, both associated with estimated glomerular filtration rate. We conclude that, despite challenges in addressing phenotypic heterogeneity, access to increased sample sizes will continue to provide more robust inference regarding risk variant discovery for DKD.Peer reviewe

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms
    corecore