9 research outputs found

    Fos regulates macrophage infiltration against surrounding tissue resistance by a cortical actin-based mechanism in Drosophila

    Get PDF
    The infiltration of immune cells into tissues underlies the establishment of tissue-resident macrophages and responses to infections and tumors. Yet the mechanisms immune cells utilize to negotiate tissue barriers in living organisms are not well understood, and a role for cortical actin has not been examined. Here, we find that the tissue invasion of Drosophila macrophages, also known as plasmatocytes or hemocytes, utilizes enhanced cortical F-actin levels stimulated by the Drosophila member of the fos proto oncogene transcription factor family (Dfos, Kayak). RNA sequencing analysis and live imaging show that Dfos enhances F-actin levels around the entire macrophage surface by increasing mRNA levels of the membrane spanning molecular scaffold tetraspanin TM4SF, and the actin cross-linking filamin Cheerio, which are themselves required for invasion. Both the filamin and the tetraspanin enhance the cortical activity of Rho1 and the formin Diaphanous and thus the assembly of cortical actin, which is a critical function since expressing a dominant active form of Diaphanous can rescue the Dfos macrophage invasion defect. In vivo imaging shows that Dfos enhances the efficiency of the initial phases of macrophage tissue entry. Genetic evidence argues that this Dfos-induced program in macrophages counteracts the constraint produced by the tension of surrounding tissues and buffers the properties of the macrophage nucleus from affecting tissue entry. We thus identify strengthening the cortical actin cytoskeleton through Dfos as a key process allowing efficient forward movement of an immune cell into surrounding tissues

    ISTA Thesis

    No full text
    The infiltration of immune cells into tissues underlies the establishment of tissue-resident macrophages and responses to infections and tumors. However, the mechanisms immune cells utilize to collectively migrate through tissue barriers in vivo are not yet well understood. In this thesis, I describe two mechanisms that Drosophila immune cells (hemocytes) use to overcome the tissue barrier of the germband in the embryo. One strategy is the strengthening of the actin cortex through developmentally controlled transcriptional regulation induced by the Drosophila proto-oncogene family member Dfos, which I show in Chapter 2. Dfos induces expression of the tetraspanin TM4SF and the filamin Cher leading to higher levels of the activated formin Dia at the cortex and increased cortical F-actin. This enhanced cortical strength allows hemocytes to overcome the physical resistance of the surrounding tissue and translocate their nucleus to move forward. This mechanism affects the speed of migration when hemocytes face a confined environment in vivo. Another aspect of the invasion process is the initial step of the leading hemocytes entering the tissue, which potentially guides the follower cells. In Chapter 3, I describe a novel subpopulation of hemocytes activated by BMP signaling prior to tissue invasion that leads penetration into the germband. Hemocytes that are deficient in BMP signaling activation show impaired persistence at the tissue entry, while their migration speed remains unaffected. This suggests that there might be different mechanisms controlling immune cell migration within the confined environment in vivo, one of these being the general ability to overcome the resistance of the surrounding tissue and another affecting the order of hemocytes that collectively invade the tissue in a stream of individual cells. Together, my findings provide deeper insights into transcriptional changes in immune cells that enable efficient tissue invasion and pave the way for future studies investigating the early colonization of tissues by macrophages in higher organisms. Moreover, they extend the current view of Drosophila immune cell heterogeneity and point toward a potentially conserved role for canonical BMP signaling in specifying immune cells that lead the migration of tissue resident macrophages during embryogenesis

    Cortical actin properties controlled by Drosophila Fos aid macrophage infiltration against surrounding tissue resistance

    No full text
    The infiltration of immune cells into tissues underlies the establishment of tissue resident macrophages, and responses to infections and tumors. Yet the mechanisms immune cells utilize to negotiate tissue barriers in living organisms are not well understood, and a role for cortical actin has not been examined. Here we find that the tissue invasion of Drosophila macrophages, also known as plasmatocytes or hemocytes, utilizes enhanced cortical F-actin levels stimulated by the Drosophila member of the fos proto oncogene transcription factor family (Dfos, Kayak). RNA sequencing analysis and live imaging show that Dfos enhances F-actin levels around the entire macrophage surface by increasing mRNA levels of the membrane spanning molecular scaffold tetraspanin TM4SF, and the actin cross-linking filamin Cheerio which are themselves required for invasion. Cortical F-actin levels are critical as expressing a dominant active form of Diaphanous, a actin polymerizing Formin, can rescue the Dfos Dominant Negative macrophage invasion defect. In vivo imaging shows that Dfos is required to enhance the efficiency of the initial phases of macrophage tissue entry. Genetic evidence argues that this Dfos-induced program in macrophages counteracts the constraint produced by the tension of surrounding tissues and buffers the mechanical properties of the macrophage nucleus from affecting tissue entry. We thus identify tuning the cortical actin cytoskeleton through Dfos as a key process allowing efficient forward movement of an immune cell into surrounding tissues

    Tools Allowing Independent Visualization and Genetic Manipulation of Drosophilamelanogaster Macrophages and Surrounding Tissues

    Get PDF
    Drosophila melanogaster plasmatocytes, the phagocytic cells among hemocytes, are essential for immune responses, but also play key roles from early development to death through their interactions with other cell types. They regulate homeostasis and signaling during development, stem cell proliferation, metabolism, cancer, wound responses, and aging, displaying intriguing molecular and functional conservation with vertebrate macrophages. Given the relative ease of genetics in Drosophila compared to vertebrates, tools permitting visualization and genetic manipulation of plasmatocytes and surrounding tissues independently at all stages would greatly aid a fuller understanding of these processes, but are lacking. Here, we describe a comprehensive set of transgenic lines that allow this. These include extremely brightly fluorescing mCherry-based lines that allow GAL4-independent visualization of plasmatocyte nuclei, the cytoplasm, or the actin cytoskeleton from embryonic stage 8 through adulthood in both live and fixed samples even as heterozygotes, greatly facilitating screening. These lines allow live visualization and tracking of embryonic plasmatocytes, as well as larval plasmatocytes residing at the body wall or flowing with the surrounding hemolymph. With confocal imaging, interactions of plasmatocytes and inner tissues can be seen in live or fixed embryos, larvae, and adults. They permit efficient GAL4-independent Fluorescence-Activated Cell Sorting (FACS) analysis/sorting of plasmatocytes throughout life. To facilitate genetic studies of reciprocal signaling, we have also made a plasmatocyte-expressing QF2 line that, in combination with extant GAL4 drivers, allows independent genetic manipulation of both plasmatocytes and surrounding tissues, and GAL80 lines that block GAL4 drivers from affecting plasmatocytes, all of which function from the early embryo to the adult
    corecore