6 research outputs found

    Generation of digital surface and terrain models of the Tatras Mountains based on airbone laser scanning (ALS) point cloud

    No full text
    Celem pracy było zaprezentowanie metod zastosowanych w półautomatycznym procesie generowania numerycznych modeli bazujących na chmurze punktów zarejestrowanych technologią lotniczego skaningu laserowego (ang. Airborne Laser Scanning; ALS) w trudnych obszarach wysokogórskich Tatr. Teren badań o powierzchni około 60 km2, obejmował masyw Kasprowego Wierchu, Kuźnice oraz fragment miasta Zakopane ze stokami Gubałówki. Dane ALS pozyskano w 2007 roku w 33 pasach (RIEGL LMS-Q560), w zagęszczeniu, co najmniej 20 pkt/m2. Wpasowania połączonych skanów dokonano w oparciu o pomiary tachimetryczne powierzchni planarnych (dachy budynków) i dowiązanie przez dGPS. Błędy położenia punktów w płaszczyźnie poziomej wahały się w przedziale -0.09÷+0.28 m, a błędy wysokościowe w przedziale od -0.12÷0.14 m (HAE). Wykonawca dostarczył dane osobno z 2 skanerów, dla każdego: pierwsze i ostatnie odbicie impulsu. Ze względu na duży rozmiar plików podzielono ja na mniejsze generując 353 obszary robocze o rozmiarze 500·500 m dla każdego skanera i numeru odbicia. Przeprowadzono filtrację chmury punktów oraz ich klasyfikację do zestawów danych: „low points”, „ground", „low vegetation”, „medium vegetation”, „high vegetation” oraz „air points”. W celu wygenerowania NMPT stworzono klasę „ground_inverse" wymagającą kontroli operatora wspomagającego się ortofotomozaiką cyfrową (RGB\CIR; kamera Vexcel). Dla każdego przetwarzanego obszaru roboczego wygenerowano NMT oraz NMPT. Na podstawie zweryfikowanych modeli wygenerowano znormalizowany numeryczny model powierzchni terenu obrazujący wysokości względne obiektów występujących w obszarze opracowania (drzewa, piętro kosodrzewiny, budynki, linie energetyczne, liny wyciągów, etc). Analizy przestrzenne bazujące na wygenerowanych modelach otwierają zupełnie nowe możliwości licznym badaniom naukowym.The work presented was aimed at constructing a semi-automatic work-flow of Digital Surface Model (DSM) and Digital Terrain Model (DTM) generation based on an ALS point cloud gathered in a very difficult mountain area. The study area located in the Polish part of the Tatras Mountains covered about 60 km2 and included the Kasprowy Wierch, Kuźnice, and downtown Zakopane with the Gubałówka. ALS data, collected in 2007, consisted of 33 scans (minimum density of 20 points/m2). To combine all the scans and match them to the coordinate system, planar surfaces (building roofs) were measured using a tachimeter and a dGPS survey. Position errors of the ALS points in the horizontal plane varied from -0.09m to +0.28m; height errors ranged from -0.12m to 0.14m (HAE). The operator delivered the data separately from 2 Riegl Q- 560 scanners, for every FE and LE. The ALS files, due to their huge size, were divided into smaller ones and generated 353 sheets (500x500 m in size ) for every scanner and number of returns combination. The point cloud was filtered and assigned to the following levels: "low points”, "ground", "low vegetation”, "medium vegetation”, "high vegetation” and "air points”. To generate a DSM, a special class called "ground_inverse" was created; it required an operator control supported by a digital orthophoto (RGB\CIR; Vexcel camera). For every sheet processed, the DTM and DSM were generated. Those verified models served as a basis for developing an nDSM model using the ER Mapper software. The nDSM shows relative heights of objects in the study area (forest stands, dwarf mountain pines, buildings, power lines, ski lifts, etc.). Development of a precise DSM and nDSM as well as analyses of the nDSM open new perspectives for numerous scientific projects

    Automatic analysis of spatial vectocardiograms

    No full text

    Development and manufacturing of casting technology for crawler vehicle suspension used in wetlands

    No full text
    The modern designing techniques and development procedures requires the use of advanced integrated methods. That kind of approach requires the involvement of series of steps which leads to the logical work stream known as Integrated Computational Material Engineering. The steps involve the design and evaluation process in the virtual environment of CAD/CAE and simulation software. The use of simulation software allows for online optimization of the shape and properties of designed part. The publication presents a design and manufacturing process of a component of the larger assembly of the chassis of heavy-duty machine. Established methodology includes the analysis of the initial geometry of the part of the heavy vehicle used in difficult wetland environmental conditions

    Opracowanie oraz optymalizacja konstrukcji odlewu wahacza maszyny ciężkiej pracującej w trudnych warunkach środowiska wodno-błotnego

    No full text
    The development of a new element is a very complex procedure requiring a combination of many factors related to the design and manufacture phases. The most efficient way is to use computer simulation which allows for verification of the whole design and production process. Over the years, the development of computer technologies has allowed for the development of an Integrated Computational Material Engineering (ICME). This method in logical sequence makes it possible to integrate the project activities, to develop new manufacturing methods, to select suitable materials and to verify the final process. Such multi-threaded operations significantly shorten the time required for the production of the prototype which speeds up the implementation of the planned production of the designed casting. The additional advantage of such work is the possibility of ongoing monitoring of the changes and their impact on the final product.Opracowanie nowej konstrukcji jest bardzo skomplikowaną procedurą wymagającą połączenia wielu zazębiających się kroków projektowych połączonych z przesłankami technologicznymi wybranej metody wytwarzania. Obowiązujące trendy projektowania uwzględniają wykorzystanie symulacji komputerowej, która znajduje zastosowanie w ocenie założeń konstrukcyjnych oraz analizę numeryczną zjawisk występujących w trakcie wytwarzania. Wieloletni rozwój takiego podejścia pozwolił na stworzenie zintegrowanego systemu projektowania z ang. Integrated Computational Material Engineering (ICME). Ogólna charakterystyka metody polega na utworzeniu logicznego ciągu przyczynowo-skutkowego projektowania, doboru materiału i weryfikacji procesu wykonywania oraz eksploatacji. Takie wielowątkowe podejście pozwala na znaczące skrócenie czasu wymaganego do przygotowania produkcji funkcjonalnego prototypu, a następnie wprowadzenie go do testów przemysłowych. Niewątpliwą zaletą jest możliwość ciągłego monitorowania zmian konstrukcyjnych i technologicznych oraz ich wpływ na efekt końcowy produktu

    Ceramic-Carbon Filters for Molten Metal Alloys Filtration

    No full text
    In 2014 we finished research works involved in the development of a technology for manufacturing innovative ceramic-carbon foam filters for molten metal alloys filtration, which were financed by the National Centre for Research and Development (NCBiR) from INNOTECH programme resources. A batch of the filters produced in this technology was tested in practice in domestic cast steel and cast iron foundries. The trials were successful and foundries declared their intention to purchase the newly-developed filters for the current production of casts. This provided an incentive for “Ferro-Term” Sp. z o.o. to start design works on the prototype line for a serial production of these filters. At the same time, in co-operation with a scientific consortium, including the co-authors of the technology, i.e. the Institute of Ceramics and Building Materials, Refractory Materials Division in Gliwice, Institute for the Chemical Processing of Coal in Zabrze and Foundry Research Institute in Cracow, the company made a successful attempt to raise some funds for the necessary adaptation of the developed technology from the semi-technical to industrial scale from Intelligent Development Operational Programme. In the article we have presented information on the effects of works performed within the framework of the project entitled “Modernization and adaptation of the existing technological line for purposes related to technology verification and start-up of the production of innovative ceramic-carbon filters for molten metal alloy filtration”

    Biosensing using dynamic-mode cantilever sensors: A review

    No full text
    Extended Abstract The mass is one of the basic biophysical parameters describing the properties of biological systems. It is inherently connected to many important intracellular biophysical processes like protein expression or cell division Microcantilever-based sensor uses a laser based optical system to determine the oscillation frequency or bending amplitude of microcantilever. Laser light illuminates the free tip of the cantilever and Position Sensitive Detector (PSD) determines the position of reflected light Yeast cells are eukaryotic microorganisms classified as members of the fungus kingdom. Yeasts cells typically measure several micrometres in diameter. We chose them because S. cerevisiae are simple eukaryotic cells, serving as a model for all eukaryotes. Furthermore, yeast cells are easy to culture and are resistant to environment conditions like dehydration. They also have a simple shape which allowed us to observe and count them using optical and confocal microscopies. The yeast strain used in this study is mainly used in the production of alcohol. Cell mass determination is based on resonance frequency shift between loaded (with yeast cells attached) and unloaded cantilever Reference
    corecore