100 research outputs found

    Lack of association between mutations of gene-encoding mitochondrial D310 (displacement loop) mononucleotide repeat and oxidative stress in chronic dialysis patients in Taiwan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mitochondria (mt) are highly susceptible to reactive oxygen species (ROS). In this study, we investigated the association between a region within the displacement loop (D-loop) in mtDNA that is highly susceptible to ROS and oxidative stress markers in chronic dialysis patients. We enrolled 184 chronic dialysis patients and 213 age-matched healthy subjects for comparison. Blood levels of oxidative stress markers, such as thiobarbituric acid reactive substances (TBARS) and free thiol, and the mtDNA copy number were determined. A mononucleotide repeat sequence (CCCC...CCCTCCCCCC) between nucleotides 303 and 316-318 (D310) was identified in mtDNA.</p> <p>Results</p> <p>Depending on alterations in the D310 mononucleotide repeat, subjects were categorized into 4 subgroups: 7-C, 8-C, 9 or 10-C, and T-to-C transition. Oxidative stress was higher in chronic dialysis patients, evidenced by higher levels of TBARS and mtDNA copy number, and a lower level of free thiol. The distribution of 7-C, 8-C, and 9-10C in dialysis and control subjects was as follows: 7-C (38% <it>vs. </it>31.5%), 8-C (35.3% <it>vs. </it>43.2%), and 9-10C (24.5% <it>vs. </it>22.1%). Although there were significant differences in levels of TBARS, free thiol, and the mtDNA copy number in the D310 repeat subgroups (except T-to-C transition) between dialysis patients and control subjects, post hoc analyses within the same study cohort revealed no significant differences.</p> <p>Conclusion</p> <p>Although oxidative stress was elevated in chronic dialysis patients and resulted in a compensatory increase in the mtDNA copy number, homopolymeric C repeats in the mtDNA region (D310), susceptible to ROS, were not associated with oxidative stress markers in these patients.</p

    PLEKHA7 Is an Adherens Junction Protein with a Tissue Distribution and Subcellular Localization Distinct from ZO-1 and E-Cadherin

    Get PDF
    The pleckstrin-homology-domain-containing protein PLEKHA7 was recently identified as a protein linking the E-cadherin-p120 ctn complex to the microtubule cytoskeleton. Here we characterize the expression, tissue distribution and subcellular localization of PLEKHA7 by immunoblotting, immunofluorescence microscopy, immunoelectron microscopy, and northern blotting in mammalian tissues. Anti-PLEKHA7 antibodies label the junctional regions of cultured kidney epithelial cells by immunofluorescence microscopy, and major polypeptides of Mr ∼135 kDa and ∼145 kDa by immunoblotting of lysates of cells and tissues. Two PLEKHA7 transcripts (∼5.5 kb and ∼6.5 kb) are detected in epithelial tissues. PLEKHA7 is detected at epithelial junctions in sections of kidney, liver, pancreas, intestine, retina, and cornea, and its tissue distribution and subcellular localization are distinct from ZO-1. For example, PLEKHA7 is not detected within kidney glomeruli. Similarly to E-cadherin, p120 ctn, β-catenin and α-catenin, PLEKHA7 is concentrated in the apical junctional belt, but unlike these adherens junction markers, and similarly to afadin, PLEKHA7 is not localized along the lateral region of polarized epithelial cells. Immunoelectron microscopy definitively establishes that PLEKHA7 is localized at the adherens junctions in colonic epithelial cells, at a mean distance of 28 nm from the plasma membrane. In summary, we show that PLEKHA7 is a cytoplasmic component of the epithelial adherens junction belt, with a subcellular localization and tissue distribution that is distinct from that of ZO-1 and most AJ proteins, and we provide the first description of its distribution and localization in several tissues

    Activation of store-operated calcium entry in airway smooth muscle cells: insight from a mathematical model

    Get PDF
    Intracellular dynamics of airway smooth muscle cells (ASMC) mediate ASMC contraction and proliferation, and thus play a key role in airway hyper-responsiveness (AHR) and remodelling in asthma. We evaluate the importance of store-operated entry (SOCE) in these dynamics by constructing a mathematical model of ASMC signaling based on experimental data from lung slices. The model confirms that SOCE is elicited upon sufficient depletion of the sarcoplasmic reticulum (SR), while receptor-operated entry (ROCE) is inhibited in such conditions. It also shows that SOCE can sustain agonist-induced oscillations in the absence of other influx. SOCE up-regulation may thus contribute to AHR by increasing the oscillation frequency that in turn regulates ASMC contraction. The model also provides an explanation for the failure of the SERCA pump blocker CPA to clamp the cytosolic of ASMC in lung slices, by showing that CPA is unable to maintain the SR empty of . This prediction is confirmed by experimental data from mouse lung slices, and strongly suggests that CPA only partially inhibits SERCA in ASMC

    Direct Visualization of Peptide/MHC Complexes at the Surface and in the Intracellular Compartments of Cells Infected In Vivo by Leishmania major

    Get PDF
    Protozoa and bacteria infect various types of phagocytic cells including macrophages, monocytes, dendritic cells and eosinophils. However, it is not clear which of these cells process and present microbial antigens in vivo and in which cellular compartments parasite peptides are loaded onto Major Histocompatibility Complex molecules. To address these issues, we have infected susceptible BALB/c (H-2d) mice with a recombinant Leishmania major parasite expressing a fluorescent tracer. To directly visualize the antigen presenting cells that present parasite-derived peptides to CD4+ T cells, we have generated a monoclonal antibody that reacts to an antigenic peptide derived from the parasite LACK antigen bound to I-Ad Major Histocompatibility Complex class II molecule. Immunogold electron microscopic analysis of in vivo infected cells showed that intracellular I-Ad/LACK complexes were present in the membrane of amastigote-containing phagosomes in dendritic cells, eosinophils and macrophages/monocytes. In both dendritic cells and macrophages, these complexes were also present in smaller vesicles that did not contain amastigote. The presence of I-Ad/LACK complexes at the surface of dendritic cells, but neither on the plasma membrane of macrophages nor eosinophils was independently confirmed by flow cytometry and by incubating sorted phagocytes with highly sensitive LACK-specific hybridomas. Altogether, our results suggest that peptides derived from Leishmania proteins are loaded onto Major Histocompatibility Complex class II molecules in the phagosomes of infected phagocytes. Although these complexes are transported to the cell surface in dendritic cells, therefore allowing the stimulation of parasite-specific CD4+ T cells, this does not occur in other phagocytic cells. To our knowledge, this is the first study in which Major Histocompatibility Complex class II molecules bound to peptides derived from a parasite protein have been visualized within and at the surface of cells that were infected in vivo

    The Mitochondrial Chaperone Protein TRAP1 Mitigates Ξ±-Synuclein Toxicity

    Get PDF
    Overexpression or mutation of Ξ±-Synuclein is associated with protein aggregation and interferes with a number of cellular processes, including mitochondrial integrity and function. We used a whole-genome screen in the fruit fly Drosophila melanogaster to search for novel genetic modifiers of human [A53T]Ξ±-Synuclein–induced neurotoxicity. Decreased expression of the mitochondrial chaperone protein tumor necrosis factor receptor associated protein-1 (TRAP1) was found to enhance age-dependent loss of fly head dopamine (DA) and DA neuron number resulting from [A53T]Ξ±-Synuclein expression. In addition, decreased TRAP1 expression in [A53T]Ξ±-Synuclein–expressing flies resulted in enhanced loss of climbing ability and sensitivity to oxidative stress. Overexpression of human TRAP1 was able to rescue these phenotypes. Similarly, human TRAP1 overexpression in rat primary cortical neurons rescued [A53T]Ξ±-Synuclein–induced sensitivity to rotenone treatment. In human (non)neuronal cell lines, small interfering RNA directed against TRAP1 enhanced [A53T]Ξ±-Synuclein–induced sensitivity to oxidative stress treatment. [A53T]Ξ±-Synuclein directly interfered with mitochondrial function, as its expression reduced Complex I activity in HEK293 cells. These effects were blocked by TRAP1 overexpression. Moreover, TRAP1 was able to prevent alteration in mitochondrial morphology caused by [A53T]Ξ±-Synuclein overexpression in human SH-SY5Y cells. These results indicate that [A53T]Ξ±-Synuclein toxicity is intimately connected to mitochondrial dysfunction and that toxicity reduction in fly and rat primary neurons and human cell lines can be achieved using overexpression of the mitochondrial chaperone TRAP1. Interestingly, TRAP1 has previously been shown to be phosphorylated by the serine/threonine kinase PINK1, thus providing a potential link of PINK1 via TRAP1 to Ξ±-Synuclein

    Impaired Inflammatory Responses in Murine Lrrk2-Knockdown Brain Microglia

    Get PDF
    LRRK2, a Parkinson's disease associated gene, is highly expressed in microglia in addition to neurons; however, its function in microglia has not been evaluated. Using Lrrk2 knockdown (Lrrk2-KD) murine microglia prepared by lentiviral-mediated transfer of Lrrk2-specific small inhibitory hairpin RNA (shRNA), we found that Lrrk2 deficiency attenuated lipopolysaccharide (LPS)-induced mRNA and/or protein expression of inducible nitric oxide synthase, TNF-Ξ±, IL-1Ξ² and IL-6. LPS-induced phosphorylation of p38 mitogen-activated protein kinase and stimulation of NF-ΞΊB-responsive luciferase reporter activity was also decreased in Lrrk2-KD cells. Interestingly, the decrease in NF-ΞΊB transcriptional activity measured by luciferase assays appeared to reflect increased binding of the inhibitory NF-ΞΊB homodimer, p50/p50, to DNA. In LPS-responsive HEK293T cells, overexpression of the human LRRK2 pathologic, kinase-active mutant G2019S increased basal and LPS-induced levels of phosphorylated p38 and JNK, whereas wild-type and other pathologic (R1441C and G2385R) or artificial kinase-dead (D1994A) LRRK2 mutants either enhanced or did not change basal and LPS-induced p38 and JNK phosphorylation levels. However, wild-type LRRK2 and all LRRK2 mutant variants equally enhanced NF-ΞΊB transcriptional activity. Taken together, these results suggest that LRRK2 is a positive regulator of inflammation in murine microglia, and LRRK2 mutations may alter the microenvironment of the brain to favor neuroinflammation

    Meta-Profiles of Gene Expression during Aging: Limited Similarities between Mouse and Human and an Unexpectedly Decreased Inflammatory Signature

    Get PDF
    Background: Skin aging is associated with intrinsic processes that compromise the structure of the extracellular matrix while promoting loss of functional and regenerative capacity. These processes are accompanied by a large-scale shift in gene expression, but underlying mechanisms are not understood and conservation of these mechanisms between humans and mice is uncertain. Results: We used genome-wide expression profiling to investigate the aging skin transcriptome. In humans, age-related shifts in gene expression were sex-specific. In females, aging increased expression of transcripts associated with T-cells, B-cells and dendritic cells, and decreased expression of genes in regions with elevated Zeb1, AP-2 and YY1 motif density. In males, however, these effects were contrasting or absent. When age-associated gene expression patterns in human skin were compared to those in tail skin from CB6F1 mice, overall human-mouse correspondence was weak. Moreover, inflammatory gene expression patterns were not induced with aging of mouse tail skin, and well-known aging biomarkers were in fact decreased (e.g., Clec7a, Lyz1 and Lyz2). These unexpected patterns and weak human-mouse correspondence may be due to decreased abundance of antigen presenting cells in mouse tail skin with age. Conclusions: Aging is generally associated with a pro-inflammatory state, but we have identified an exception to this pattern with aging of CB6F1 mouse tail skin. Aging therefore does not uniformly heighten inflammatory status across all mouse tissues. Furthermore, we identified both intercellular and intracellular mechanisms of transcriptome aging, including those that are sex- and species-specific

    Nature meets nurture: molecular genetics of gastric cancer

    Get PDF
    The immensity of genes and molecules implicated in gastric carcinogenesis is overwhelming and the relevant importance of some of these molecules is too often unclear. This review serves to bring us up-to-date with the latest findings as well as to look at the larger picture in terms of how to tackle the problem of solving this multi-piece puzzle. In this review, the environmental nurturing of intestinal cancer is discussed, beginning with epidemiology (known causative factors for inducing molecular change), an update of H. pylori research, including the role of inflammation and stem cells in premalignant lesions. The role of E-cadherin in the nature (genotype) of diffuse gastric cancer is highlighted, and finally the ever growing discipline of SNP analysis (including IL1B) is discussed
    • …
    corecore