168 research outputs found

    Largest recent impact craters on Mars: Orbital imaging and surface seismic co-investigation.

    Get PDF
    Two >130-meter-diameter impact craters formed on Mars during the later half of 2021. These are the two largest fresh impact craters discovered by the Mars Reconnaissance Orbiter since operations started 16 years ago. The impacts created two of the largest seismic events (magnitudes greater than 4) recorded by InSight during its 3-year mission. The combination of orbital imagery and seismic ground motion enables the investigation of subsurface and atmospheric energy partitioning of the impact process on a planet with a thin atmosphere and the first direct test of martian deep-interior seismic models with known event distances. The impact at 35°N excavated blocks of water ice, which is the lowest latitude at which ice has been directly observed on Mars

    Declining Orangutan Encounter Rates from Wallace to the Present Suggest the Species Was Once More Abundant

    Get PDF
    BACKGROUND: Bornean orangutans (Pongo pygmaeus) currently occur at low densities and seeing a wild one is a rare event. Compared to present low encounter rates of orangutans, it is striking how many orangutan each day historic collectors like Alfred Russel Wallace were able to shoot continuously over weeks or even months. Does that indicate that some 150 years ago encounter rates with orangutans, or their densities, were higher than now? METHODOLOGY/PRINCIPAL FINDINGS: We test this hypothesis by quantifying encounter rates obtained from hunting accounts, museum collections, and recent field studies, and analysing whether there is a declining trend over time. Logistic regression analyses of our data support such a decline on Borneo between the mid-19th century and the present. Even when controlled for variation in the size of survey and hunting teams and the durations of expeditions, mean daily encounter rates appear to have declined about 6-fold in areas with little or no forest disturbance. CONCLUSIONS/SIGNIFICANCE: This finding has potential consequences for our understanding of orangutans, because it suggests that Bornean orangutans once occurred at higher densities. We explore potential explanations-habitat loss and degradation, hunting, and disease-and conclude that hunting fits the observed patterns best. This suggests that hunting has been underestimated as a key causal factor of orangutan density and distribution, and that species population declines have been more severe than previously estimated based on habitat loss only. Our findings may require us to rethink the biology of orangutans, with much of our ecological understanding possibly being based on field studies of animals living at lower densities than they did historically. Our approach of quantifying species encounter rates from historic data demonstrates that this method can yield valuable information about the ecology and population density of species in the past, providing new insight into species' conservation needs

    Lack of cortico-limbic coupling in bipolar disorder and schizophrenia during emotion regulation

    Get PDF
    Bipolar disorder (BD) and schizophrenia (Sz) share dysfunction in prefrontal inhibitory brain systems, yet exhibit distinct forms of affective disturbance. We aimed to distinguish these disorders on the basis of differential activation in cortico-limbic pathways during voluntary emotion regulation. Patients with DSM-IV diagnosed Sz (12) or BD-I (13) and 15 healthy control (HC) participants performed a well-established emotion regulation task while undergoing functional magnetic resonance imaging. The task required participants to voluntarily upregulate or downregulate their subjective affect while viewing emotionally negative images or maintain their affective response as a comparison condition. In BD, abnormal overactivity (hyperactivation) occurred in the right ventrolateral prefrontal cortex (VLPFC) during up- and downregulation of negative affect, relative to HC. Among Sz, prefrontal hypoactivation of the right VLPFC occurred during downregulation (opposite to BD), whereas upregulation elicited hyperactivity in the right VLPFC similar to BD. Amygdala activity was significantly related to subjective negative affect in HC and BD, but not Sz. Furthermore, amygdala activity was inversely coupled with the activity in the left PFC during downregulation in HC (r=−0.76), while such coupling did not occur in BD or Sz. These preliminary results indicate that differential cortico-limbic activation can distinguish the clinical groups in line with affective disturbance: BD is characterized by ineffective cortical control over limbic regions during emotion regulation, while Sz is characterized by an apparent failure to engage cortical (hypofrontality) and limbic regions during downregulation

    Ancestral State Reconstruction Reveals Rampant Homoplasy of Diagnostic Morphological Characters in Urticaceae, Conflicting with Current Classification Schemes

    Get PDF
    Urticaceae is a family with more than 2000 species, which contains remarkable morphological diversity. It has undergone many taxonomic reorganizations, and is currently the subject of further systematic studies. To gain more resolution in systematic studies and to better understand the general patterns of character evolution in Urticaceae, based on our previous phylogeny including 169 accessions comprising 122 species across 47 Urticaceae genera, we examined 19 diagnostic characters, and analysed these employing both maximum-parsimony and maximum-likelihood approaches. Our results revealed that 16 characters exhibited multiple state changes within the family, with ten exhibiting >eight changes and three exhibiting between 28 and 40. Morphological synapomorphies were identified for many clades, but the diagnostic value of these was often limited due to reversals within the clade and/or homoplasies elsewhere. Recognition of the four clades comprising the family at subfamily level can be supported by a small number carefully chosen defining traits for each. Several non-monophyletic genera appear to be defined only by characters that are plesiomorphic within their clades, and more detailed work would be valuable to find defining traits for monophyletic clades within these. Some character evolution may be attributed to adaptive evolution in Urticaceae due to shifts in habitat or vegetation type. This study demonstrated the value of using phylogeny to trace character evolution, and determine the relative importance of morphological traits for classification

    Cross-translational studies in human and Drosophila identify markers of sleep loss

    Get PDF
    Inadequate sleep has become endemic, which imposes a substantial burden for public health and safety. At present, there are no objective tests to determine if an individual has gone without sleep for an extended period of time. Here we describe a novel approach that takes advantage of the evolutionary conservation of sleep to identify markers of sleep loss. To begin, we demonstrate that IL-6 is increased in rats following chronic total sleep deprivation and in humans following 30 h of waking. Discovery experiments were then conducted on saliva taken from sleep-deprived human subjects to identify candidate markers. Given the relationship between sleep and immunity, we used Human Inflammation Low Density Arrays to screen saliva for novel markers of sleep deprivation. Integrin αM (ITGAM) and Anaxin A3 (AnxA3) were significantly elevated following 30 h of sleep loss. To confirm these results, we used QPCR to evaluate ITGAM and AnxA3 in independent samples collected after 24 h of waking; both transcripts were increased. The behavior of these markers was then evaluated further using the power of Drosophila genetics as a cost-effective means to determine whether the marker is associated with vulnerability to sleep loss or other confounding factors (e.g., stress). Transcript profiling in flies indicated that the Drosophila homologues of ITGAM were not predictive of sleep loss. Thus, we examined transcript levels of additional members of the integrin family in flies. Only transcript levels of scab, the Drosophila homologue of Integrin α5 (ITGA5), were associated with vulnerability to extended waking. Since ITGA5 was not included on the Low Density Array, we returned to human samples and found that ITGA5 transcript levels were increased following sleep deprivation. These cross-translational data indicate that fly and human discovery experiments are mutually reinforcing and can be used interchangeably to identify candidate biomarkers of sleep loss

    Epigenetic expansion of VHL-HIF signal output drives multiorgan metastasis in renal cancer.

    Get PDF
    Inactivation of the von Hippel-Lindau tumor suppressor gene, VHL, is an archetypical tumor-initiating event in clear cell renal carcinoma (ccRCC) that leads to the activation of hypoxia-inducible transcription factors (HIFs). However, VHL mutation status in ccRCC is not correlated with clinical outcome. Here we show that during ccRCC progression, cancer cells exploit diverse epigenetic alterations to empower a branch of the VHL-HIF pathway for metastasis, and the strength of this activation is associated with poor clinical outcome. By analyzing metastatic subpopulations of VHL-deficient ccRCC cells, we discovered an epigenetically altered VHL-HIF response that is specific to metastatic ccRCC. Focusing on the two most prominent pro-metastatic VHL-HIF target genes, we show that loss of Polycomb repressive complex 2 (PRC2)-dependent histone H3 Lys27 trimethylation (H3K27me3) activates HIF-driven chemokine (C-X-C motif) receptor 4 (CXCR4) expression in support of chemotactic cell invasion, whereas loss of DNA methylation enables HIF-driven cytohesin 1 interacting protein (CYTIP) expression to protect cancer cells from death cytokine signals. Thus, metastasis in ccRCC is based on an epigenetically expanded output of the tumor-initiating pathway

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
    corecore