30 research outputs found

    Computational Fragment-Based Binding Site Identification by Ligand Competitive Saturation

    Get PDF
    Fragment-based drug discovery using NMR and x-ray crystallographic methods has proven utility but also non-trivial time, materials, and labor costs. Current computational fragment-based approaches circumvent these issues but suffer from limited representations of protein flexibility and solvation effects, leading to difficulties with rigorous ranking of fragment affinities. To overcome these limitations we describe an explicit solvent all-atom molecular dynamics methodology (SILCS: Site Identification by Ligand Competitive Saturation) that uses small aliphatic and aromatic molecules plus water molecules to map the affinity pattern of a protein for hydrophobic groups, aromatic groups, hydrogen bond donors, and hydrogen bond acceptors. By simultaneously incorporating ligands representative of all these functionalities, the method is an in silico free energy-based competition assay that generates three-dimensional probability maps of fragment binding (FragMaps) indicating favorable fragment∢protein interactions. Applied to the two-fold symmetric oncoprotein BCL-6, the SILCS method yields two-fold symmetric FragMaps that recapitulate the crystallographic binding modes of the SMRT and BCOR peptides. These FragMaps account both for important sequence and structure differences in the C-terminal halves of the two peptides and also the high mobility of the BCL-6 His116 sidechain in the peptide-binding groove. Such SILCS FragMaps can be used to qualitatively inform the design of small-molecule inhibitors or as scoring grids for high-throughput in silico docking that incorporate both an atomic-level description of solvation and protein flexibility

    Accessing a Hidden Conformation of the Maltose Binding Protein Using Accelerated Molecular Dynamics

    Get PDF
    Periplasmic binding proteins (PBPs) are a large family of molecular transporters that play a key role in nutrient uptake and chemotaxis in Gram-negative bacteria. All PBPs have characteristic two-domain architecture with a central interdomain ligand-binding cleft. Upon binding to their respective ligands, PBPs undergo a large conformational change that effectively closes the binding cleft. This conformational change is traditionally viewed as a ligand induced-fit process; however, the intrinsic dynamics of the protein may also be crucial for ligand recognition. Recent NMR paramagnetic relaxation enhancement (PRE) experiments have shown that the maltose binding protein (MBP) - a prototypical member of the PBP superfamily - exists in a rapidly exchanging (ns to Β΅s regime) mixture comprising an open state (approx 95%), and a minor partially closed state (approx 5%). Here we describe accelerated MD simulations that provide a detailed picture of the transition between the open and partially closed states, and confirm the existence of a dynamical equilibrium between these two states in apo MBP. We find that a flexible part of the protein called the balancing interface motif (residues 175–184) is displaced during the transformation. Continuum electrostatic calculations indicate that the repacking of non-polar residues near the hinge region plays an important role in driving the conformational change. Oscillations between open and partially closed states create variations in the shape and size of the binding site. The study provides a detailed description of the conformational space available to ligand-free MBP, and has implications for understanding ligand recognition and allostery in related proteins

    A Software Tool for Analysis in Function Spaces

    No full text

    Regularising Transformations for Integral Dependencies

    No full text

    Micromagnetics

    No full text
    corecore