6 research outputs found

    Short-time evolution of Lagrangian velocity gradient correlations in isotropic turbulence

    No full text
    We show by direct numerical simulation (DNS) that the Lagrangian cross correlation of velocity gradients in homogeneous isotropic turbulence increases at short times, whereas its auto-correlation decreases. Kinematic considerations allow to show that two invariants of the turbulent velocity field determine the short-time velocity gradient correlations. In order to get a more intuitive understanding of the dynamics for longer times, heuristic models are proposed involving the combined action of local shear and rotation. These models quantitatively reproduce the effects and disentangle the different physical mechanisms leading to the observations in the DNS

    Quasi-static magnetohydrodynamic turbulence at high Reynolds number

    No full text

    Characterization of a system generating a homogeneous isotropic turbulence field by free synthetic jets

    No full text
    International audienceA facility inspired by Hwang and Eaton (2004) for generating a homogeneous isotropic turbulence was built, the objective being to study evaporating droplets in the presence of turbulence. Turbulence was produced by the mixing of six synthetic jets, in ambient atmosphere. Combined PIV and LDA techniques were used to measure the statistical turbulence properties. The turbulence produced was found to be homogeneous isotropic with a small mean flow within a domain having an average size of 50 × 50 × 50 mm. The rms fluctuations were of the order of 0.9 m/s, corresponding to a Taylor Reynolds number of 240 and an integral length scale of about 40 mm. This apparatus proved to be well suited to the study of the evaporation of droplets in a controlled turbulence field
    corecore