446 research outputs found
Mortality of the invasive white garden snail Theba pisana exposed to three US isolates of Phasmarhabditis spp (P. hermaphrodita, P. californica, and P. papillosa).
Theba pisana is a serious snail pest in many parts of the world and affects diverse crops including grain, vegetables, grapevines, and ornamental plants and shrubs. Due to its gregarious nature, ability to reproduce rapidly, and the difficulty of controlling it by conventional methods, it has the potential to become a significant pest where introduced. Mitigating this pest is an important challenge that must be addressed. Phasmarhabditis hermaphrodita, is a gastropod-killing nematode that is commercially available only in Europe (Nemaslug ®) and Sub-Saharan Africa (Slugtech ® SP). The use of effective gastropod-killing nematodes in the genus Phasmarhabditis (P. hermaphrodita, P. californica and P. papillosa) in California may provide one strategy for alleviating the potential damage and further spread of these snails, which are currently limited to San Diego and Los Angeles counties. Laboratory assays demonstrated for the first time that US isolates of P. hermaphrodita, P. californica and P. papillosa at 150 DJs/cm2 caused significant mortality and are equally lethal to T. pisana. Molluscicidal efficacy of these nematodes are comparable with those of iron phosphate, at the recommended high dose of 4.88 kg/m2. Additional trials are needed to determine their effects at lower dose and whether they are dependent on the size or age of the snails
The Effects of Individual Vessel Quotas in the British Columbia Halibut Fishery
Implementation of Individual vessel quotas (IVQs) in the British Columbia halibut fishery has provided a unique opportunity to examine the effects of this management technique on a previously intense "derby" fishery. This paper describes the changes that have occurred in the fishery since the introduction of individual vessel quotas in 1991. The results presented here are largely based on the findings of two surveys. In September 1993, we conducted in-depth interviews with most of the major halibut processors in British Columbia. These processors reported significant changes in the processors and marketing of halibut. In Spring 1994, we conducted a mail survey of all 435 licensed halibut fishermen. The survey consisted of several series of questions designed to measure changes in fishing operations (crew size, fishing practices, etc.). quota leasing activities, changes in fishing income, and opinions about the effects of IVQs. The results presented here provide important information about the effects of the British Columbia halibut IVQ program to date and will be useful for comparison to similar management programs implemented elsewhere.fishery management, ITQs, Pacific Halibut, Environmental Economics and Policy, International Relations/Trade, Resource /Energy Economics and Policy,
The Deformation of an Elastic Substrate by a Three-Phase Contact Line
Young's classic analysis of the equilibrium of a three-phase contact line
ignores the out-of-plane component of the liquid-vapor surface tension. While
it has long been appreciated that this unresolved force must be balanced by
elastic deformation of the solid substrate, a definitive analysis has remained
elusive because conventional idealizations of the substrate imply a divergence
of stress at the contact line. While a number of theories of have been
presented to cut off the divergence, none of them have provided reasonable
agreement with experimental data. We measure surface and bulk deformation of a
thin elastic film near a three-phase contact line using fluorescence confocal
microscopy. The out-of-plane deformation is well fit by a linear elastic theory
incorporating an out-of-plane restoring force due to the surface tension of the
gel. This theory predicts that the deformation profile near the contact line is
scale-free and independent of the substrate elastic modulus.Comment: 4 pages, 3 figure
Liquid-Liquid Phase Separation in an Elastic Network
Living and engineered systems rely on the stable coexistence of two
interspersed liquid phases. Yet surface tension drives their complete
separation. Here we show that stable droplets of uniform and tuneable size can
be produced through arrested phase separation in an elastic matrix. Starting
with an elastic polymer network swollen by a solvent mixture, we change the
temperature or composition to drive demixing. Droplets nucleate and grow to a
stable size that is tuneable by the network cross-linking density, the cooling
rate, and the composition of the solvent mixture. We discuss thermodynamic and
mechanical constraints on the process. In particular, we show that the
threshold for macroscopic phase separation is altered by the elasticity of the
polymer network, and we highlight the role of internuclear correlations in
determining the droplet size and polydispersity. This phenomenon has potential
applications ranging from colloid synthesis and structural colour to phase
separation in biological cells.Comment: 6 figure
A direct optical method for the study of grain boundary melting
The structure and evolution of grain boundaries underlies the nature of
polycrystalline materials. Here we describe an experimental apparatus and light
reflection technique for measuring disorder at grain boundaries in optically
clear material, in thermodynamic equilibrium. The approach is demonstrated on
ice bicrystals. Crystallographic orientation is measured for each ice sample.
The type and concentration of impurity in the liquid can be controlled and the
temperature can be continuously recorded and controlled over a range near the
melting point. The general methodology is appropriate for a wide variety of
materials.Comment: 8 pages, 8 figures, updated with minor changes made to published
versio
Comparison of sample preparation methods, instrumentation platforms, and contemporary commercial databases for identification of clinically relevant mycobacteria by matrix-assisted laser desorption ionization - Time of flight mass spectrometry
When mycobacteria are recovered in clinical specimens, timely species-level identification is required to establish the clinical significance of the isolate and facilitate optimization of antimicrobial therapy. Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) has recently been reported to be a reliable and expedited method for identification of mycobacteria, although various specimen preparation techniques and databases for analysis are reported across studies. Here we compared two MALDI-TOF MS instrumentation platforms and three databases: Bruker Biotyper Real Time Classification 3.1 (Biotyper), Vitek MS Plus Saramis Premium (Saramis), and Vitek MS v3.0. We evaluated two sample preparation techniques and demonstrate that extraction methods are not interchangeable across different platforms or databases. Once testing parameters were established, a panel of 157 mycobacterial isolates (including 16 Mycobacterium tuberculosis isolates) was evaluated, demonstrating that with the appropriate specimen preparation, all three methods provide reliable identification for most species. Using a score cutoff value of ≥1.8, the Biotyper correctly identified 133 (84.7%) isolates with no misidentifications. Using a confidence value of ≥90%, Saramis correctly identified 134 (85.4%) isolates with one misidentification and Vitek MS v3.0 correctly identified 140 (89.2%) isolates with one misidentification. The levels of accuracy were not significantly different across the three platforms (P = 0.14). In addition, we show that Vitek MS v3.0 requires modestly fewer repeat analyses than the Biotyper and Saramis methods (P = 0.04), which may have implications for laboratory workflow
Polycrystallinity enhances stress build-up around ice
Damage caused by freezing wet, porous materials is a widespread problem, but
is hard to predict or control. Here, we show that polycrystallinity makes a
great difference to the stress build-up process that underpins this damage.
Unfrozen water in grain-boundary grooves feeds ice growth at temperatures below
the freezing temperature, leading to the fast build-up of localized stresses.
The process is very variable, which we ascribe to local differences in
ice-grain orientation, and to the surprising mobility of many grooves -- which
further accelerates stress build-up. Our work will help understand how freezing
damage occurs, and in developing accurate models and effective
damage-mitigation strategies.Comment: 4 figure
- …