38 research outputs found

    Vasomotion and Neurovascular Coupling in the Visual Thalamus In Vivo

    Get PDF
    Spontaneous contraction and relaxation of arteries (and in some instances venules) has been termed vasomotion and has been observed in an extensive variety of tissues and species. However, its functions and underlying mechanisms are still under discussion. We demonstrate that in vivo spectrophotometry, measured simultaneously with extracellular recordings at the same locations in the visual thalamus of the cat, reveals vasomotion, measured as an oscillation (0.14hz) in the recorded oxyhemoglobin (OxyHb) signal, which appears spontaneously in the microcirculation and can last for periods of hours. During some non-oscillatory periods, maintained sensory stimulation evokes vasomotion lasting ∼30s, resembling an adaptive vascular phenomenon. This oscillation in the oxyhaemoblobin signal is sensitive to pharmacological manipulation: it is inducible by chloralose anaesthesia and it can be temporarily blocked by systemic administration of adrenaline or acetylcholine (ACh). During these oscillatory periods, neurovascular coupling (i.e. the relationship between local neural activity and the rate of blood supply to that location) appears significantly altered. This raises important questions with regard to the interpretation of results from studies currently dependent upon a linear relationship between neural activity and blood flow, such as neuroimaging

    Juveniles versus adults: differences in PGE2 levels in the gingival crevicular fluid during orthodontic tooth movement

    No full text
    This study aimed to investigate age-related changes in the biosynthetic capacity of prostaglandin E2 (PGE2) in the gingival crevicular fluid (GCF) during one month of orthodontic treatment. Twenty-five juvenile subjects (mean age 13 ± 2.1 years) and 23 adults (mean age 24 ± 2.1 years) were included. GCF was collected immediately before the force application at the baseline, 2, 21 and 28 days, with periopaper inserted into the gingival crevice of the maxillary lateral incisors. The mediator levels were determined with an EIA kit. The results showed that the PGE2 concentrations were significantly elevated from the baseline to 21 days (129.35 and 198.84 pg/µL, p = 0.0169) in juvenile subjects and reduced from 21 to 28 days (198.84 to 112.60 pg/µL, p = 0.0032). Adults, however, had no significant changes in the PGE2 levels. The total amounts of PGE2 from both groups changed between the baseline to 21 and 21 to 28 days (p = 0.0119 and p = 0.0076, respectively). The PGE2 initial and final levels showed significant differences between the juveniles and adults, being higher in adults (baseline: juvenile = 129.35 pg/µL vs. adult = 163.20 pg/µL, p = 0.0379; t3: juvenile = 112.60 pg/µL and adult = 175.30 pg/µL, p = 0.0005). In conclusion, the results demonstrate the presence of variation in the PGE2 levels according to age and the orthodontic activation period, which can explain why the speed of orthodontics treatment may be different in adults vs. juveniles
    corecore