28 research outputs found

    The Effect of Diet and Opponent Size on Aggressive Interactions Involving Caribbean Crazy Ants (Nylanderia fulva)

    Get PDF
    Biotic interactions are often important in the establishment and spread of invasive species. In particular, competition between introduced and native species can strongly influence the distribution and spread of exotic species and in some cases competition among introduced species can be important. The Caribbean crazy ant, Nylanderia fulva, was recently introduced to the Gulf Coast of Texas, and appears to be spreading inland. It has been hypothesized that competition with the red imported fire ant, Solenopsis invicta, may be an important factor in the spread of crazy ants. We investigated the potential of interspecific competition among these two introduced ants by measuring interspecific aggression between Caribbean crazy ant workers and workers of Solenopsis invicta. Specifically, we examined the effect of body size and diet on individual-level aggressive interactions among crazy ant workers and fire ants. We found that differences in diet did not alter interactions between crazy ant workers from different nests, but carbohydrate level did play an important role in antagonistic interactions with fire ants: crazy ants on low sugar diets were more aggressive and less likely to be killed in aggressive encounters with fire ants. We found that large fire ants engaged in fewer fights with crazy ants than small fire ants, but fire ant size affected neither fire ant nor crazy ant mortality. Overall, crazy ants experienced higher mortality than fire ants after aggressive encounters. Our findings suggest that fire ant workers might outcompete crazy ant workers on an individual level, providing some biotic resistance to crazy ant range expansion. However, this resistance may be overcome by crazy ants that have a restricted sugar intake, which may occur when crazy ants are excluded from resources by fire ants

    Dynamic Thermal Structure of Imported Fire Ant Mounds

    Get PDF
    A study was undertaken to characterize surface temperatures of mounds of imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae) and S. richteri Forel, and their hybrid, as it relates to sun position and shape of the mounds, to better understand factors that affect absorption of solar radiation by the nest mound and to test feasibility of using thermal infrared imagery to remotely sense mounds. Mean mound surface temperature peaked shortly after solar noon and exceeded mean surface temperature of the surrounding surface. Temperature range for mounds and their surroundings peaked near solar noon, and the temperature range of the mound surface exceeded that of the surrounding area. The temperature difference between mounds and their surroundings peaked around solar noon and ranged from about 2 to 10°C. Quadratic trends relating temperature measurements to time of day (expressed as percentage of daylight hours from apparent sunrise to apparent sunset) explained 77 to 88% of the variation in the data. Mounds were asymmetrical, with the apex offset on average 81.5 ± 1.2 mm to the north of the average center. South facing aspects were about 20% larger than north facing aspects. Mound surface aspect and slope affected surface temperature; this affect was greatly influenced by time of day. Thermal infrared imagery was used to illustrate the effect of mound shape on surface temperature. These results indicate that the temperature differences between mounds and their surroundings are sufficient for detection using thermal infrared remote sensing, and predictable temporal changes in surface temperature may be useful for classifying mounds in images

    Evaluation of a lateral flow immunoassay for field identification of Solenopsis invicta (Hymenoptera: Formicidae) in Australia

    No full text
    In an effort to improve surveillance capacity for the exotic red imported fire ant, Solenopsis invicta, a lateral flow immunoassay (LFA) was recently evaluated by Biosecurity Queensland staff in Australia. The purpose of the research was to assess the ability of the fire ant LFA to discriminate S. invicta from ants found in Australia and to conduct the first field evaluation of the test. In addition to S. invicta, 36 species of ants, collected mainly from Queensland, were evaluated by the LFA, including species from the Dolichoderinae (n = 7), Formicinae (n = 13), Myrmeciinae (n = 1), Myrmicinae (n = 11), Ponerinae (n = 3) and Pseudomyrmicinae (n = 1) subfamilies. The fire ant LFA test correctly identified S. invicta in every instance. No cross reactivity was observed in the other ant species. Field tests by staff previously unfamiliar with the test resulted in suggestions for improving ant collection and manipulation. The fire ant LFA appears to be suitable for use in Australia for rapid confirmation of potential new detections of S. invicta
    corecore