21 research outputs found
A method to study the effect of bronchodilators on smoke retention in COPD patients: study protocol for a randomized controlled trial
<p>Abstract</p> <p>Background</p> <p>Chronic obstructive pulmonary disease (COPD) is a common disease, associated with cardiovascular disease. Many patients use (long-acting) bronchodilators, whilst they continue smoking alongside. We hypothesised an interaction between bronchodilators and smoking that enhances smoke exposure, and hence cardiovascular disease. In this paper, we report our study protocol that explores the fundamental interaction, i.e. smoke retention.</p> <p>Method</p> <p>The design consists of a double-blinded, placebo-controlled, randomised crossover trial, in which 40 COPD patients smoke cigarettes during both undilated and maximal bronchodilated conditions. Our primary outcome is the retention of cigarette smoke, expressed as tar and nicotine weight. The inhaled tar weights are calculated from the correlated extracted nicotine weights in cigarette filters, whereas the exhaled weights are collected on Cambridge filters. We established the inhaled weight calculations by a pilot study, that included paired measurements from several smoking regimes. Our study protocol is approved by the local accredited medical review ethics committee.</p> <p>Discussion</p> <p>Our study is currently in progress. The pilot study revealed valid equations for inhaled tar and nicotine, with an R<sup>2 </sup>of 0.82 and 0.74 (p < 0.01), respectively. We developed a method to study pulmonary smoke retentions in COPD patients under the influence of bronchodilation which may affect smoking-related disease. This trial will provide fundamental knowledge about the (cardiovascular) safety of bronchodilators in patients with COPD who persist in their habit of cigarette smoking.</p> <p>Trial registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00981851">NCT00981851</a></p
Large drought-induced aboveground live biomass losses in southern Rocky Mountain aspen forests
Quaking Aspen Regeneration Following Presribed Fire In Lassen Volcanic National Park, California, USA
Prescribed fire is commonly used for restoration, but the effects of reintroducing fire following a century of fire exclusion are unknown in many ecosystems. We assessed the effects of three prescribed fires, native ungulate browsing, and conifer competition on quaking aspen (Populus tremuloides Michx.) regeneration in four small groves (0.5 ha to 3.0 ha) in Lassen Volcanic National Park, California, USA, over an 11 yr period. The effects of fire on aspen regeneration density and height were variable within and among sites. Post-fire aspen regeneration density generally decreased with greater conifer basal area (rs = −0.73), but there was a wide range of aspen regeneration densities (4000 to 36 667 stems ha-1) at transects with no live conifers post-fire. The height of aspen regeneration increased as a function of increasing years-since-fire (1 yr to 11 yr), but heavy browsing by mule deer (Odocoileus hemionus Rafinesque) may alter future growth trajectories. Median percent of aspen regeneration browsed was high in burned (91%) and unburned (81%) transects. Only 7% (282 stems ha-1 to 333 stems ha-1) of post-fire aspen regeneration in 11- year old burns exceeded the height necessary to escape mule deer browsing (150 cm). Browsing may also be altering aspen growth form, such that multi-stemmed aspen regeneration was positively associated with proportion of aspen regeneration browsed. These four case studies indicate that the effects of prescribed fires on quaking aspen in the southern Cascade Range of northern California were highly variable and, when coupled with biotic factors (such as deer browsing and competing vegetation) and varying fire severity, fire may either benefit or hasten the decline of small aspen groves
