38 research outputs found

    Carboxypeptidase G2 rescue in patients with methotrexate intoxication and renal failure

    Get PDF
    The methotrexate (MTX) rescue agent carboxypeptidase G2 (CPDG2) rapidly hydrolyses MTX to the inactive metabolite DAMPA (4-[[2,4-diamino-6-(pteridinyl)methyl]-methylamino]-benzoic acid) and glutamate in patients with MTX-induced renal failure and delayed MTX excretion. DAMPA is thought to be an inactive metabolite of MTX because it is not an effective inhibitor of the MTX target enzyme dihydrofolate reductase. DAMPA is eliminated more rapidly than MTX in these patients, which suggests a nonrenal route of elimination. In a phase II study (May 1997–March 2002), CPDG2 was administered intravenously to 82 patients at a median dose of 50 U kg−1 (range 33–60 U kg−1). Eligible patients for this study had serum MTX concentrations of >10 μM at 36 h or >5 μM at 42 h after start of MTX infusion and documented renal failure (serum creatinine ⩾1.5 times the upper limit of normal). Immediately before CPDG2 administration, a median MTX serum level of 11.93 μM (range 0.52–901 μM) was documented. Carboxypeptidase G2 was given at a median of 52 h (range 25–178 h) following the start of an MTX infusion of 1–12 g m−2 4–36 h−1 and resulted in a rapid 97% (range 73–99%) reduction of the MTX serum level. Toxicity related to CPDG2 was not observed. Toxicity related to MTX was documented in about half the patients; four patients died despite CPDG2 administration due to severe myelosuppression and septic complications. In conclusion, administration of CPDG2 is a well-tolerated, safe and a very effective way of MTX elimination in delayed excretion due to renal failure

    Deep brain stimulation for obsessive-compulsive disorder and treatment-resistant depression: systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In spite of advances in psychotherapy and pharmacotherapy, there are still a significant number of patients with depression and obsessive-compulsive disorder that are not aided by either intervention. Although still in the experimental stage, deep brain stimulation (DBS) offers many advantages over other physically-invasive procedures as a treatment for these psychiatric disorders. The purpose of this study is to systematically review reports on clinical trials of DBS for obsessive-compulsive disorder (OCD) and treatment-resistant depression (TRD). Locations for stimulation, success rates and effects of the stimulation on brain metabolism are noted when available. The first observation of the effects of DBS on OCD and TRD came in the course of using DBS to treat movement disorders. Reports of changes in OCD and depression during such studies are reviewed with particular attention to electrode locations and associated adverse events; although these reports were adventitious observations rather than planned. Subsequent studies have been guided by more precise theories of structures involved in DBS and OICD. This study suggests stimulation sites and prognostic indicators for DBS. We also briefly review tractography, a relatively new procedure that holds great promise for the further development of DBS.</p> <p>Methods</p> <p>Articles were retrieved from MEDLINE via PubMed. Relevant references in retrieved articles were followed up. We included all articles reporting on studies of patients selected for having OCD or TRD. Adequacy of the selected studies was evaluated by the Jadad scale. Evaluation criteria included: number of patients, use of recognized psychiatric rating scales, and use of brain blood flow measurements. Success rates classified as "improved" or "recovered" were recorded. Studies of DBS for movement disorders were included if they reported coincidental relief of depression or reduction in OCD. Most of the studies involved small numbers of subjects so individual studies were reviewed.</p> <p>Results</p> <p>While the number of cases was small, these were extremely treatment-resistant patients. While not everyone responded, about half the patients did show dramatic improvement. Associated adverse events were generally trivial in younger psychiatric patients but often severe in older movement disorder patients. The procedures differed from study to study, and the numbers of patients was usually too small to do meaningful statistics or make valid inferences as to who will respond to treatment.</p> <p>Conclusions</p> <p>DBS is considered a promising technique for OCD and TRD. Outstanding questions about patient selection and electrode placement can probably be resolved by (a) larger studies, (b) genetic studies and (c) imaging studies (MRI, fMRI, PET, and tractography).</p

    Discovery of permuted and recently split transfer RNAs in Archaea

    Get PDF
    Background: As in eukaryotes, precursor transfer RNAs in Archaea often contain introns that are removed in tRNA maturation. Two unrelated archaeal species display unique pre-tRNA processing complexity in the form of split tRNA genes, in which two to three segments of tRNAs are transcribed from different loci, then trans-spliced to form a mature tRNA. Another rare type of pre-tRNA, found only in eukaryotic algae, is permuted, where the 3 ’ half is encoded upstream of the 5 ’ half, and must be processed to be functional. Results: Using an improved version of the gene-finding program tRNAscan-SE, comparative analyses and experimental verifications, we have now identified four novel trans-spliced tRNA genes, each in a different species of the Desulfurococcales branch of the Archaea: tRNA Asp(GUC) in Aeropyrum pernix and Thermosphaera aggregans, and tRNA Lys(CUU) in Staphylothermus hellenicus and Staphylothermus marinus. Each of these includes features surprisingly similar to previously studied split tRNAs, yet comparative genomic context analysis and phylogenetic distribution suggest several independent, relatively recent splitting events. Additionally, we identified the first examples of permuted tRNA genes in Archaea: tRNA iMet(CAU) and tRNA Tyr(GUA) in Thermofilum pendens, which appear to be permuted in the same arrangement seen previously in red alga. Conclusions: Our findings illustrate that split tRNAs are sporadically spread across a major branch of the Archaea

    How Plastic Can Phenotypic Plasticity Be? The Branching Coral Stylophora pistillata as a Model System

    Get PDF
    Phenotypic plasticity enables multicellular organisms to adjust morphologies and various life history traits to variable environmental challenges. Here, we elucidate fixed and plastic architectural rules for colony astogeny in multiple types of colonial ramets, propagated by cutting from genets of the branching coral Stylophora pistillata from Eilat, the Red Sea. We examined 16 morphometric parameters on 136 one-year old S. pistillata colonies (of seven genotypes), originating from small fragments belonging, each, to one of three single-branch types (single tips, start-up, and advanced bifurcating tips) or to structural preparative manipulations (representing a single or two growth axes). Experiments were guided by the rationale that in colonial forms, complexity of evolving phenotypic plasticity can be associated with a degree of structural modularity, where shapes are approached by erecting iterative growth patterns at different levels of coral-colony organization. Analyses revealed plastic morphometric characters at branch level, and predetermined morphometric traits at colony level (only single trait exhibited plasticity under extreme manipulation state). Therefore, under the experimental manipulations of this study, phenotypic plasticity in S. pistillata appears to be related to branch level of organization, whereas colony traits are controlled by predetermined genetic architectural rules. Each level of organization undergoes its own mode of astogeny. However, depending on the original ramet structure, the spherical 3-D colonial architecture in this species is orchestrated and assembled by both developmental trajectories at the branch level, and traits at the colony level of organization. In nature, branching colonial forms are often subjected to harsh environmental conditions that cause fragmentation of colony into ramets of different sizes and structures. Developmental traits that are plastic, responding to fragment structure and are not predetermine in controlling astogeny, allow formation of species-specific architecture product through integrated but variable developmental routes. This adaptive plasticity or regeneration is an efficient mechanism by which isolated fragments of branching coral species cope with external environmental forces

    Bottom-up communication: Identifying opportunities and limitations through an exploratory field-based evaluation

    No full text
    Full article available via Springerlink.comCommunication to promote behaviours like energy saving can use significant resources. What is less clear is the comparative value of different approaches available to communicators. While it is generally agreed that ‘bottom-up’ approaches, where individuals are actively involved rather than passive, are preferable to ‘top-down’ authority-led projects, there is a dearth of evidence that verifies why this should be. Additionally, while the literature has examined the mechanics of the different approaches, there has been less attention paid to the associated psychological implications. This paper reports on an exploratory comparative study that examined the effects of six distinct communication activities. The activities used different communication approaches, some participative and others more top-down informational. Two theories, from behavioural studies and communication, were used to identify key variables for consideration in this field-based evaluation. The evaluation aimed to assess not just which activity might be most successful, as this has limited generalisability, but to also gain insight into what psychological impacts might contribute to success. Analysis found support for the general hypothesis that bottom-up approaches have more impact on behaviour change than top-down. The study also identified that, in this instance, the difference in reported behaviour across the activities related partly to the extent to which intentions to change behaviour were implemented. One possible explanation for the difference in reported behaviour change across the activities is that a bottom-up approach may offer a supportive environment where participants can discuss progress with like-minded individuals. A further possible explanation is that despite controlling for intention at an individual level, the pre-existence of strong intentions may have an effect on group success. These suggestive findings point toward the critical need for additional and larger-scale studies. The challenges associated with field-based evaluative research and the role of theory are discussed. The design approach and measures used in this study may be useful to other evaluations that seek to compare different communicative approaches.The research discussed in this article was funded by a bursary from the UK Engineering and Physical Sciences Research Council

    Feline Oncoretroviruses

    No full text
    corecore