653 research outputs found

    Irrigated greywater in an urban sub-division as a potential source of metals to soil, groundwater and surface water

    Get PDF
    Increased water demands in dry countries such as Australia, have led to increased adoption of various water reuse practices. Irrigation of greywater (all water discharged from the bathrooms, laundry and kitchen apart from toilet waste) is seen as a potential means of easing water demands; however, there is limited knowledge of how greywater irrigation impacts terrestrial and aquatic environments. This study compared four greywater irrigated residential lots to adjacent non-irrigated lots that acted as controls. Accumulation and potential impacts of metals in soil, groundwater and surface water, as a result of greywater irrigation, were assessed by comparing measured concentrations to national and international guidelines. Greywater increased concentrations of some metals in irrigated soil and resulted in As, B, Cr and Cu exceeding guidelines after only four years of irrigation. Movement of metals from the irrigation areas resulted in metal concentrations in groundwater (Al, As, Cr, Cu, Fe, Mn, Ni and Zn) and surface water (Cu, Fe and Zn) exceeding environmental quality guidelines again within four years. These results are unlikely to be universally applicable but indicate the need to consider metals in greywater in order to minimize potential adverse environmental effects from greywater irrigation

    Electronic sculpting of ligand-GPCR subtype selectivity:the case of angiotensin II

    Get PDF
    GPCR subtypes possess distinct functional and pharmacological profiles, and thus development of subtype-selective ligands has immense therapeutic potential. This is especially the case for the angiotensin receptor subtypes AT1R and AT2R, where a functional negative control has been described and AT2R activation highlighted as an important cancer drug target. We describe a strategy to fine-tune ligand selectivity for the AT2R/AT1R subtypes through electronic control of ligand aromatic-prolyl interactions. Through this strategy an AT2R high affinity (<i>K</i><sub>i</sub> = 3 nM) agonist analogue that exerted 18,000-fold higher selectivity for AT2R versus AT1R was obtained. We show that this compound is a negative regulator of AT1R signaling since it is able to inhibit MCF-7 breast carcinoma cellular proliferation in the low nanomolar range

    The Atacama Cosmology Telescope: A Measurement of the 600< ell <8000 Cosmic Microwave Background Power Spectrum at 148 GHz

    Full text link
    We present a measurement of the angular power spectrum of the cosmic microwave background (CMB) radiation observed at 148 GHz. The measurement uses maps with 1.4' angular resolution made with data from the Atacama Cosmology Telescope (ACT). The observations cover 228 square degrees of the southern sky, in a 4.2-degree-wide strip centered on declination 53 degrees South. The CMB at arcminute angular scales is particularly sensitive to the Silk damping scale, to the Sunyaev-Zel'dovich (SZ) effect from galaxy clusters, and to emission by radio sources and dusty galaxies. After masking the 108 brightest point sources in our maps, we estimate the power spectrum between 600 < \ell < 8000 using the adaptive multi-taper method to minimize spectral leakage and maximize use of the full data set. Our absolute calibration is based on observations of Uranus. To verify the calibration and test the fidelity of our map at large angular scales, we cross-correlate the ACT map to the WMAP map and recover the WMAP power spectrum from 250 < ell < 1150. The power beyond the Silk damping tail of the CMB is consistent with models of the emission from point sources. We quantify the contribution of SZ clusters to the power spectrum by fitting to a model normalized at sigma8 = 0.8. We constrain the model's amplitude ASZ < 1.63 (95% CL). If interpreted as a measurement of sigma8, this implies sigma8^SZ < 0.86 (95% CL) given our SZ model. A fit of ACT and WMAP five-year data jointly to a 6-parameter LCDM model plus terms for point sources and the SZ effect is consistent with these results.Comment: 15 pages, 8 figures. Accepted for publication in Ap

    The Atacama Cosmology Telescope (ACT): Beam Profiles and First SZ Cluster Maps

    Full text link
    The Atacama Cosmology Telescope (ACT) is currently observing the cosmic microwave background with arcminute resolution at 148 GHz, 218 GHz, and 277 GHz. In this paper, we present ACT's first results. Data have been analyzed using a maximum-likelihood map-making method which uses B-splines to model and remove the atmospheric signal. It has been used to make high-precision beam maps from which we determine the experiment's window functions. This beam information directly impacts all subsequent analyses of the data. We also used the method to map a sample of galaxy clusters via the Sunyaev-Zel'dovich (SZ) effect, and show five clusters previously detected with X-ray or SZ observations. We provide integrated Compton-y measurements for each cluster. Of particular interest is our detection of the z = 0.44 component of A3128 and our current non-detection of the low-redshift part, providing strong evidence that the further cluster is more massive as suggested by X-ray measurements. This is a compelling example of the redshift-independent mass selection of the SZ effect.Comment: 16 pages, 10 figures. Accepted for publication in ApJS. See Marriage et al. (arXiv:1010.1065) and Menanteau et al. (arXiv:1006.5126) for additional cluster result

    Restriction fragment length polymorphisms distinguish among accessions of Ceratopteris thalictroides and C. richardii ( Parkeriaceae )

    Full text link
    We have used cDNA clones as probes on Southern blots to detect restriction fragment length polymorphisms among seven Ceratopteris thalictroides accessions, three C. richardii accessions, and one putative interspecific hybrid. We found that the stringency of post-hybridization washes was a critical parameter affecting the quality of our blots; even with homologous cDNA sequences low stringency conditions resulted in a smear of signal, but high stringency washes gave blots with distinct bands. Most probes showed hybridization with four or more genomic fragments. Similarities in the number and size of fragments between and within species indicated that (i) C. richardii shows limited polymorphism among accessions tested, (ii) C. thalictroides is highly polymorphic, and (iii) Hawaiian accessions of C. thalictroides are divergent relative to their continental cohorts and among themselves. The putative interspecific hybrid did not group closely with either of these species.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41637/1/606_2004_Article_BF00939725.pd

    The Atacama Cosmology Telescope: Cosmological Parameters from the 2008 Power Spectra

    Full text link
    We present cosmological parameters derived from the angular power spectrum of the cosmic microwave background (CMB) radiation observed at 148 GHz and 218 GHz over 296 deg^2 with the Atacama Cosmology Telescope (ACT) during its 2008 season. ACT measures fluctuations at scales 500<l<10000. We fit a model for the lensed CMB, Sunyaev-Zel'dovich (SZ), and foreground contribution to the 148 GHz and 218 GHz power spectra, including thermal and kinetic SZ, Poisson power from radio and infrared point sources, and clustered power from infrared point sources. The power from thermal and kinetic SZ at 148 GHz is estimated to be B_3000 = 6.8+-2.9 uK^2, where B_l=l(l+1)C_l/2pi. We estimate primary cosmological parameters from the 148 GHz spectrum, marginalizing over SZ and source power. The LCDM cosmological model is a good fit to the data, and LCDM parameters estimated from ACT+WMAP are consistent with the 7-year WMAP limits, with scale invariant n_s = 1 excluded at 99.7% CL (3sigma). A model with no CMB lensing is disfavored at 2.8sigma. By measuring the third to seventh acoustic peaks, and probing the Silk damping regime, the ACT data improve limits on cosmological parameters that affect the small-scale CMB power. The ACT data combined with WMAP give a 6sigma detection of primordial helium, with Y_P = 0.313+-0.044, and a 4sigma detection of relativistic species, assumed to be neutrinos, with Neff = 5.3+-1.3 (4.6+-0.8 with BAO+H0 data). From the CMB alone the running of the spectral index is constrained to be dn/dlnk = -0.034 +- 0.018, the limit on the tensor-to-scalar ratio is r<0.25 (95% CL), and the possible contribution of Nambu cosmic strings to the power spectrum is constrained to string tension Gmu<1.6 \times 10^-7 (95% CL).Comment: 20 pages, 13 figures. Submitted to ApJ. This paper is a companion to Hajian et al. (2010) and Das et al. (2010

    Functional characterisation of novel NR5A1 variants reveals multiple complex roles in Disorders of Sex Development

    Get PDF
    Variants in the NR5A1 gene encoding SF1 have been described in a diverse spectrum of disorders of sex development (DSD). Recently, we reported the use of a targeted gene panel for DSD where we identified 15 individuals with a variant in NR5A1, nine of which are novel. Here, we examine the functional effect of these changes in relation to the patient phenotype. All novel variants tested had reduced trans-activational activity, while several had altered protein level, localization, or conformation. In addition, we found evidence of new roles for SF1 protein domains including a region within the ligand binding domain that appears to contribute to SF1 regulation of Mu¨llerian development. There was little correlation between the severity of the phenotype and the nature of the NR5A1 variant. We report two familial cases of NR5A1 deficiency with evidence of variable expressivity; we also report on individuals with oligogenic inheritance. Finally, we found that the nature of the NR5A1 variant does not inform patient outcomes (including pubertal androgenization and malignancy risk). This study adds nine novel pathogenic NR5A1 variants to the pool of diagnostic variants. It highlights a greater need for understanding the complexity of SF1 function and the additional factors that contribute

    How achievable are COVID-19 clinical trial recruitment targets? A UK observational cohort study and trials registry analysis

    Get PDF
    OBJECTIVES: To analyse enrolment to interventional trials during the first wave of the COVID-19 pandemic in England and describe the barriers to successful recruitment in the circumstance of a further wave or future pandemics. DESIGN: We analysed registered interventional COVID-19 trial data and concurrently did a prospective observational study of hospitalised patients with COVID-19 who were being assessed for eligibility to one of the RECOVERY, C19-ACS or SIMPLE trials. SETTING: Interventional COVID-19 trial data were analysed from the clinicaltrials.gov and International Standard Randomized Controlled Trial Number databases on 12 July 2020. The patient cohort was taken from five centres in a respiratory National Institute for Health Research network. Population and modelling data were taken from published reports from the UK government and Medical Research Council Biostatistics Unit. PARTICIPANTS: 2082 consecutive admitted patients with laboratory-confirmed SARS-CoV-2 infection from 27 March 2020 were included. MAIN OUTCOME MEASURES: Proportions enrolled, and reasons for exclusion from the aforementioned trials. Comparisons of trial recruitment targets with estimated feasible recruitment numbers. RESULTS: Analysis of trial registration data for COVID-19 treatment studies enrolling in England showed that by 12 July 2020, 29 142 participants were needed. In the observational study, 430 (20.7%) proceeded to randomisation. 82 (3.9%) declined participation, 699 (33.6%) were excluded on clinical grounds, 363 (17.4%) were medically fit for discharge and 153 (7.3%) were receiving palliative care. With 111 037 people hospitalised with COVID-19 in England by 12 July 2020, we determine that 22 985 people were potentially suitable for trial enrolment. We estimate a UK hospitalisation rate of 2.38%, and that another 1.25 million infections would be required to meet recruitment targets of ongoing trials. CONCLUSIONS: Feasible recruitment rates, study design and proliferation of trials can limit the number, and size, that will successfully complete recruitment. We consider that fewer, more appropriately designed trials, prioritising cooperation between centres would maximise productivity in a further wave

    Ligand-Induced Modulation of the Free-Energy Landscape of G Protein-Coupled Receptors Explored by Adaptive Biasing Techniques

    Get PDF
    Extensive experimental information supports the formation of ligand-specific conformations of G protein-coupled receptors (GPCRs) as a possible molecular basis for their functional selectivity for signaling pathways. Taking advantage of the recently published inactive and active crystal structures of GPCRs, we have implemented an all-atom computational strategy that combines different adaptive biasing techniques to identify ligand-specific conformations along pre-determined activation pathways. Using the prototypic GPCR β2-adrenergic receptor as a suitable test case for validation, we show that ligands with different efficacies (either inverse agonists, neutral antagonists, or agonists) modulate the free-energy landscape of the receptor by shifting the conformational equilibrium towards active or inactive conformations depending on their elicited physiological response. Notably, we provide for the first time a quantitative description of the thermodynamics of the receptor in an explicit atomistic environment, which accounts for the receptor basal activity and the stabilization of different active-like states by differently potent agonists. Structural inspection of these metastable states reveals unique conformations of the receptor that may have been difficult to retrieve experimentally

    Superspreaders drive the largest outbreaks of hospital onset COVID-19 infections.

    Get PDF
    SARS-CoV-2 is notable both for its rapid spread, and for the heterogeneity of its patterns of transmission, with multiple published incidences of superspreading behaviour. Here, we applied a novel network reconstruction algorithm to infer patterns of viral transmission occurring between patients and health care workers (HCWs) in the largest clusters of COVID-19 infection identified during the first wave of the epidemic at Cambridge University Hospitals NHS Foundation Trust, UK. Based upon dates of individuals reporting symptoms, recorded individual locations, and viral genome sequence data, we show an uneven pattern of transmission between individuals, with patients being much more likely to be infected by other patients than by HCWs. Further, the data were consistent with a pattern of superspreading, whereby 21% of individuals caused 80% of transmission events. Our study provides a detailed retrospective analysis of nosocomial SARS-CoV-2 transmission, and sheds light on the need for intensive and pervasive infection control procedures
    corecore