1,783 research outputs found
Evidence for a Binary Companion to the Central Compact Object 1E 1207.4-5209
Unique among neutron stars, 1E 1207.4-5209 is an X-ray pulsar with a spin
period of 424 ms that contains at least two strong absorption features in its
energy spectrum. This neutron star has been identified as a member of the
radio-quiet compact central objects in supernova remnants. It has been found
that 1E 1207.4-5209 is not spinning down monotonically suggesting that this
neutron star undergoes strong, frequent glitches, contains a fall-back disk, or
possess a binary companion. Here, we report on a sequence of seven XMM-Newton
observations of 1E 1207.4-5209 performed during a 40 day window in June/July
2005. Due to unanticipated variance in the phase measurements beyond the
statistical uncertainties, we could not identify a unique phase-coherent timing
solution. The three most probable timing solutions give frequency time
derivatives of +0.9, -2.6, and +1.6 X 10^(-12) Hz/s (listed in descending order
of significance). We conclude that the local frequency derivative during our
XMM-Newton observing campaign differs from the long-term spin-down rate by more
than an order of magnitude, effectively ruling out glitch models for 1E
1207.4-5209. If the long-term spin frequency variations are caused by timing
noise, the strength of the timing noise in 1E 1207.4-5209 is much stronger than
in other pulsars with similar period derivatives. Therefore, it is highly
unlikely that the spin variations are caused by the same physical process that
causes timing noise in other isolated pulsars. The most plausible scenario for
the observed spin irregularities is the presence of a binary companion to 1E
1207.4-5209. We identified a family of orbital solutions that are consistent
with our phase-connected timing solution, archival frequency measurements, and
constraints on the companions mass imposed by deep IR and optical observations.Comment: 8 pages, 4 figures. To be published in the proceedings of "Isolated
Neutron Stars: from the Interior to the Surface" (April 24-28, 2006) - eds.
D. Page, R. Turolla & S. Zan
Modulation of the high-order chromatin structure by Polycomb complexes
The multi-subunit Polycomb Repressive Complex (PRC) 1 and 2 act, either independently or synergistically, to maintain and enforce a repressive state of the target chromatin, thereby regulating the processes of cell lineage specification and organismal development. In recent years, deep sequencing-based and imaging-based technologies, especially those tailored for mapping three-dimensional (3D) chromatin organization and structure, have allowed a better understanding of the PRC complex-mediated long-range chromatin contacts and DNA looping. In this review, we review current advances as for how Polycomb complexes function to modulate and help define the high-order chromatin structure and topology, highlighting the multi-faceted roles of Polycomb proteins in gene and genome regulation
Astrophysical Axion Bounds
Axion emission by hot and dense plasmas is a new energy-loss channel for
stars. Observational consequences include a modification of the solar
sound-speed profile, an increase of the solar neutrino flux, a reduction of the
helium-burning lifetime of globular-cluster stars, accelerated white-dwarf
cooling, and a reduction of the supernova SN 1987A neutrino burst duration. We
review and update these arguments and summarize the resulting axion
constraints.Comment: Contribution to Axion volume of Lecture Notes in Physics, 20 pages, 3
figure
Interaction between androgen receptor and coregulator SLIRP is regulated by Ack1 tyrosine kinase and androgen
Aberrant activation of the androgen receptor (AR) may play a critical role in castration resistant prostate cancer. After ligand binding, AR is recruited to the androgen responsive element (ARE) sequences on the DNA where AR interaction with coactivators and corepressors modulates transcription. We demonstrated that phosphorylation of AR at Tyr-267 by Ack1/TNK2 tyrosine kinase results in nuclear translocation, DNA binding, and androgen-dependent gene transcription in a low androgen environment. In order to dissect downstream mechanisms, we searched for proteins whose interaction with AR was regulated by Ack1. SLIRP (SRA stem-loop interacting RNA binding protein) was identified as a candidate protein. Interaction between AR and SLIRP was disrupted by Ack1 kinase activity as well as androgen or heregulin treatment. The noncoding RNA, SRA, was required for AR-SLIRP interaction. SLIRP was bound to AREâs of AR target genes in the absence of androgen. Treatment with androgen or heregulin led to dissociation of SLIRP from the ARE. Whole transcriptome analysis of SLIRP knockdown in androgen responsive LNCaP cells showed that SLIRP affects a significant subset of androgen-regulated genes. Our data suggest that Ack1 kinase and androgen regulate interaction between AR and SLIRP and that SLIRP functions as a coregulator of AR with properties of a corepressor in a context-dependent manner
Characterizing top gated bilayer graphene interaction with its environment by Raman spectroscopy
In this work we study the behavior of the optical phonon modes in bilayer
graphene devices by applying top gate voltage, using Raman scattering. We
observe the splitting of the Raman G band as we tune the Fermi level of the
sample, which is explained in terms of mixing of the Raman (Eg) and infrared
(Eu) phonon modes, due to different doping in the two layers. We theoretically
analyze our data in terms of the bilayer graphene phonon self-energy which
includes non-homogeneous charge carrier doping between the graphene layers. We
show that the comparison between the experiment and theoretical model not only
gives information about the total charge concentration in the bilayer graphene
device, but also allows to separately quantify the amount of unintentional
charge coming from the top and the bottom of the system, and therefore to
characterize the interaction of bilayer graphene with its surrounding
environment
A randomised, double-blind, phase 3 study comparing the efficacy and safety of ceftazidime/avibactam plus metronidazole versus meropenem for complicated intra-abdominal infections in hospitalised adults in Asia
Ceftazidime/avibactam comprises the broad-spectrum cephalosporin ceftazidime and the non-ÎČ-lactam ÎČ-lactamase inhibitor avibactam. This phase 3, randomised, double-blind study (NCT01726023) assessed the efficacy and safety of ceftazidime/avibactam plus metronidazole compared with meropenem in patients with complicated intra-abdominal infection (cIAI) in Asian countries. Subjects aged 18â90 years and hospitalised with cIAI requiring surgical intervention were randomised 1:1 to receive every 8âh either: ceftazidime/avibactam (2000/500âmg, 2-h infusion) followed by metronidazole (500âmg, 60-min infusion); or meropenem (1000âmg, 30-min infusion). Non-inferiority of ceftazidime/avibactam plus metronidazole to meropenem was concluded if the lower limit of the 95% confidence interval (CI) for the between-group difference in clinical cure rate was greater than â12.5% at the test-of-cure (TOC) visit (28â35 days after randomisation) in the clinically evaluable (CE) population. Safety was also evaluated. Of 441 subjects randomised, 432 received at least one dose of study medication (ceftazidime/avibactam plus metronidazole, nâ=â215; meropenem, nâ=â217). In the CE population at the TOC visit, non-inferiority of ceftazidime/avibactam plus metronidazole to meropenem was demonstrated, with clinical cure reported for 93.8% (166/177) and 94.0% (173/184) of subjects, respectively (between-group difference, â0.2, 95% CI â5.53 to 4.97). The clinical cure rate with ceftazidime/avibactam plus metronidazole was comparable in subjects with ceftazidime-non-susceptible and ceftazidime-susceptible isolates (95.7% vs. 92.1%, respectively). Adverse events were similar between the study groups. Ceftazidime/avibactam plus metronidazole was non-inferior to meropenem in the treatment of cIAIs in Asian populations and was effective against ceftazidime-non-susceptible pathogens. No new safety concerns were identified
ZFX Mediates Non-canonical Oncogenic Functions of the Androgen Receptor Splice Variant 7 in Castrate-Resistant Prostate Cancer
Androgen receptor splice variant 7 (AR-V7) is crucial for prostate cancer progression and therapeutic resistance. We show that, independent of ligand, AR-V7 binds both androgen-responsive elements (AREs) and non-canonical sites distinct from full-length AR (AR-FL) targets. Consequently, AR-V7 not only recapitulates AR-FL's partial functions but also regulates an additional gene expression program uniquely via binding to gene promoters rather than ARE enhancers. AR-V7 binding and AR-V7-mediated activation at these unique targets do not require FOXA1 but rely on ZFX and BRD4. Knockdown of ZFX or select unique targets of AR-V7/ZFX, or BRD4 inhibition, suppresses growth of castration-resistant prostate cancer cells. We also define an AR-V7 direct target gene signature that correlates with AR-V7 expression in primary tumors, differentiates metastatic prostate cancer from normal, and predicts poor prognosis. Thus, AR-V7 has both ARE/FOXA1 canonical and ZFX-directed non-canonical regulatory functions in the evolution of anti-androgen therapeutic resistance, providing information to guide effective therapeutic strategies. By cistrome profiling of endogenous androgen receptor (AR) versus an AR splice variant, AR-V7, Cai et al. uncovered non-canonical pathways uniquely targeted by AR-V7 and ZFX, a previously unknown AR-V7 partner. Targeting cofactors (ZFX or BRD4) or non-canonical downstream pathways of AR-V7 provides potential therapeutic ways for treating prostate cancer
The Chromatin Remodeler BPTF Activates a Stemness Gene-Expression Program Essential for the Maintenance of Adult Hematopoietic Stem Cells
Self-renewal and differentiation of adult stem cells are tightly regulated partly through configuration of chromatin structure by chromatin remodelers. Using knockout mice, we here demonstrate that bromodomain PHD finger transcription factor (BPTF), a component of the nucleosome remodeling factor (NURF) chromatin-remodeling complex, is essential for maintaining the population size of hematopoietic stem/progenitor cells (HSPCs), including long-term hematopoietic stem cells (HSCs). Bptf-deficient HSCs are defective in reconstituted hematopoiesis, and hematopoietic-specific knockout of Bptf caused profound defects including bone marrow failure and anemia. Genome-wide transcriptome profiling revealed that BPTF loss caused downregulation of HSC-specific gene-expression programs, which contain several master transcription factors (Meis1, Pbx1, Mn1, and Lmo2) required for HSC maintenance and self-renewal. Furthermore, we show that BPTF potentiates the chromatin accessibility of key HSC âstemnessâ genes. These results demonstrate an essential requirement of the chromatin remodeler BPTF and NURF for activation of âstemnessâ gene-expression programs and proper function of adult HSCs. Wang and colleagues show that a chromatin remodeler, BPTF, sustains appropriate functions of hematopoietic stem/progenitor cells (HSPCs). BPTF loss causes bone marrow failure and anemia. The authors further define a BPTF-dependent gene-expression program in HSPCs, which contains key HSC stemness factors. These results demonstrate an essential requirement of the BPTF-associated chromatin remodelers for HSC functionality and adult hematopoiesis
Dynamic study on fusion reactions for Ca+Zr around Coulomb barrier
By using the updated improved Quantum Molecular Dynamics model in which a
surface-symmetry potential term has been introduced for the first time, the
excitation functions for fusion reactions of Ca+Zr at
energies around the Coulomb barrier have been studied. The experimental data of
the fusion cross sections for Ca+Zr have been reproduced
remarkably well without introducing any new parameters. The fusion cross
sections for the neutron-rich fusion reactions of Ca+Zr around
the Coulomb barrier are predicted to be enhanced compared with a
non-neutron-rich fusion reaction. In order to clarify the mechanism of the
enhancement of the fusion cross sections for neutron-rich nuclear fusions, we
pay a great attention to study the dynamic lowering of the Coulomb barrier
during a neck formation. The isospin effect on the barrier lowering is
investigated. It is interesting that the effect of the projectile and target
nuclear structure on fusion dynamics can be revealed to a certain extent in our
approach. The time evolution of the N/Z ratio at the neck region has been
firstly illustrated. A large enhancement of the N/Z ratio at neck region for
neutron-rich nuclear fusion reactions is found.Comment: 21 pages, 7 figures,3 table
High-p_T pion and kaon production in relativistic nuclear collisions
High-p_T pion and kaon production is studied in relativistic proton-proton,
proton-nucleus, and nucleus-nucleus collisions in a wide energy range. Cross
sections are calculated based on perturbative QCD, augmented by a
phenomenological transverse momentum distribution of partons (``intrinsic
k_T''). An energy dependent width of the transverse momentum distribution is
extracted from pion and charged hadron production data in
proton-proton/proton-antiproton collisions. Effects of multiscattering and
shadowing in the strongly interacting medium are taken into account.
Enhancement of the transverse momentum width is introduced and parameterized to
explain the Cronin effect. In collisions between heavy nuclei, the model
over-predicts central pion production cross sections (more significantly at
higher energies), hinting at the presence of jet quenching. Predictions are
made for proton-nucleus and nucleus-nucleus collisions at RHIC energies.Comment: 26 pages in Latex, 19 EPS figure
- âŠ