3,369 research outputs found
Giant optical nonlinearities from Rydberg-excitons in semiconductor microcavities
The realization of exciton-polaritons -- hybrid excitations of semiconductor
quantum well excitons and cavity photons -- has been of great technological and
scientific significance. In particular, the short-range collisional interaction
between excitons has enabled explorations into a wealth of nonequilibrium and
hydrodynamical effects that arise in weakly nonlinear polariton condensates.
Yet, the ability to enhance optical nonlinearities would enable quantum
photonics applications and open up a new realm of photonic many-body physics in
a scalable and engineerable solid-state environment. Here we outline a route to
such capabilities in cavity-coupled semiconductors by exploiting the giant
interactions between excitons in Rydberg-states. We demonstrate that optical
nonlinearities in such systems can be vastly enhanced by several orders of
magnitude and induce nonlinear processes at the level of single photons.Comment: 17 pages, 5 figure
Hydrogen adsorption in metal-organic frameworks: the role of nuclear quantum effects
The role of nuclear quantum effects on the adsorption of molecular hydrogen
in metal-organic frameworks (MOFs) has been investigated on grounds of
Grand-Canonical Quantized Liquid Density-Functional Theory (GC-QLDFT)
calculations. For this purpose, we have carefully validated classical H2 -host
interaction potentials that are obtained by fitting Born-Oppenheimer ab initio
reference data. The hydrogen adsorption has first been assessed classically
using Liquid Density-Functional Theory (LDFT) and the Grand-Canonical Monte
Carlo (GCMC) methods. The results have been compared against the semi-classical
treatment of quantum effects by applying the Feynman-Hibbs correction to the
Born-Oppenheimer-derived potentials, and by explicit treatment within the
Grand-Canonical Quantized Liquid Density-Functional Theory (GC-QLDFT). The
results are compared with experimental data and indicate pronounced quantum and
possibly many-particle effects. After validation calculations have been carried
out for IRMOF-1 (MOF-5), GC-QLDFT is applied to study the adsorption of H2 in a
series of MOFs, including IRMOF-4, -6, -8, -9, -10, -12, -14, -16, -18 and
MOF-177. Finally, we discuss the evolution of the H2 quantum fluid with
increasing pressure and lowering temperature
Grand-Canonical Quantized Liquid Density-Functional Theory in a Car-Parrinello Implementation
Quantized Liquid Density-Functional Theory [Phys. Rev. E 2009, 80, 031603], a
method developed to assess the adsorption of gas molecules in porous
nanomaterials, is reformulated within the grand canonical ensemble. With the
grand potential it is possible to compare directly external and internal
thermodynamic quantities. In our new implementation, the grand potential is
minimized utilizing the Car-Parrinello approach and gives, in particular for
low temperature simulations, a significant computational advantage over the
original canonical approaches. The method is validated against original QLDFT,
and applied to model potentials and graphite slit pores.Comment: 19 pages, 5 figure
Mathematical and Experimental Investigation of Yeast Colony Development – A Model System for the Growth of Filamentous Fungi in Heterogeneous Environments
In the presented study, dimorphic yeasts were applied as model organisms to study the growth of fungal mycelia. When environmental conditions are chosen appropriately, yeast colonies are built up of well separated individual cells. Thus, in contrast to fungal mycelia the translocation of nutrients and information within the colony can be neglected. The study focuses on the question of how the growth behaviour of a population of single cells is regulated, and which differences can be expected when nutrient translocation actually occurs. To answer this question, at first, an effective method for the highly resolved estimation of biomass distributions inside the colonies was developed. This method facilitates a dynamic non-invasive monitoring of colony development. Furthermore, mathematical models were established which describe the development of the colonies based on the behaviour of discrete individual cells. Growth simulations allow a quantitative prediction, and, thereby, an in silico testing of hypothetic regulatory mechanisms. The growth behaviour of yeast colonies was investigated applying the model organisms Candida boidinii and Yarrowia lipolytica. The yeasts were cultivated on solid agar substrates at various degrees of carbon and nitrogen limitation, respectively. The highest gain of understanding was achieved for the growth of both yeasts on glucose as the limiting carbon source: Investigations showed that mycelial yeast colonies adapt to declining nutrient concentrations by decreasing the cell density in their mycelium while the growth rate of the colony diameter remains constant. Under glucose limitation, the yeast C. boidinii grows diffusion-limited, i.e., the growth of the population is controlled by the amount of nutrient that diffuses towards the colony. The cessation of growth coincides with the depletion of the primary nutrient source glucose from the growth substrate. In contrast to these findings, it was shown that Y. lipolytica colonies continue to extend even after the complete consumption of glucose. In the absence of the primary nutrient source, the yeast assimilates biomass from the inner colony regions to facilitate the growth of the population. The suggested mechanism of coupled extension and decay processes was verified by a number of experiments. However, the mechanism which facilitates the transport of decay products to the growing colony boundary, i.e., the actual nature of the decay process, remains unclear. Mathematical simulations show that a continuous colony extension on the decay products of dying cells cannot be explained by the assumption that colonies are built up of uncoordinatedly growing single cells. Therefore, a hypothesis for the growth of Y. lipolytica colonies was derived which suggests that these populations are built up of tube-like hyphal cells. Accordingly, the measured drop of biomass density in the inner colony areas is the consequence of a cytoplasm transport towards the growing edge of the mycelium where it is assimilated as a secondary nutrient resource in the absence of glucose. It has to be emphasized that this hypothesis also provides a mechanistic explanation for the vacuolisation of hyphae in mycelia of higher fungi.In der vorgestellten Arbeit wurden dimorphe Hefen als Modellorganismen für die Untersuchung des Wachstums von Pilzmyzelien eingesetzt. Bei geeigneter Wahl der Umgebungsbedingungen sind Hefekolonien aus Einzelzellen aufgebaut, wodurch im Gegensatz zu Myzelien höherer Pilze der Transport von Nährstoffen und Informationen innerhalb der Kolonie vernachlässigt werden kann. Im Mittelpunkt der Untersuchungen stand die Frage, wie das Wachstumsverhalten einer Population individueller Zellen reguliert ist, bzw. welche Unterschiede sich ergeben, wenn ein Nährstofftransport tatsächlich stattfindet. Um diese Fragestellungen bearbeiten zu können, wurde zunächst eine effektive Methode zur hoch ortsaufgelösten Bestimmung der Biomasseverteilung innerhalb der Kolonien entwickelt. Diese Methode ermöglicht ein dynamisches nichtinvasives Monitoring der Entwicklung einer Kolonie. Weiterhin wurden mathematische Modelle entwickelt, die das Wachstumsverhalteeiner Population auf der Grundlage des Verhaltens von diskreten Einzelzellen beschreibt. Die Wachstumssimulationen erlauben quantitative Vorhersagen und damit ein in silico Testen der Auswirkungen von hypothetischen Regulationsmechanismen. Das Wachstumsverhalten von Hefekolonien wurde anhand der Modellorganismen Candida boidinii und Yarrowia lipolytica untersucht. Die Hefen wurden auf festen Agar-Nährböden bei verschieden starker Kohlenstoff- und Stickstofflimitation kultviert. Der größte Erkenntnisgewinn wurde dabei für das Wachstum beider Hefen auf Glukose als limitierender Kohlenstoffquelle erzielt: Die Untersuchungen ergaben, dass myzelartig wachsende Hefekolonien bei sinkenden Nährstoffkonzentrationen eine geringere Zelldichte aber einen konstante Wachstumsgeschwindigkeit des Koloniedurchmessers aufweisen. Die Hefe C. boidinii wächst unter Glukoselimitation diffusionslimitiert, d.h. das Wachstum der Population wird durch die Menge der zur Kolonie diffundierenden Nährstoffe bestimmt. Der Abbruch des Koloniewachstums fällt mit dem Verbrauch der primären Nähstoffquelle Glukose zusammen. Im Gegensatz dazu konnte für das Wachstum von Y. lipolytica gezeigt werden, dass sich die Kolonien auch nach dem vollständigen Verbrauch von Glukose weiter ausdehnen. Im Abwesenheit der primären Nährstoffquelle nutzt die Hefe Zerfallsprodukte eigener Zellmasse aus dem Inneren der Kolonie als Nährstoff, um das weitere Wachstum der Population zu gewährleisten. Während der vorgeschlagene gekoppelte Ausdehnungs- und Zerfallprozess durch eine Reihe von Versuchen experimentell abgesichert wurde, bleibt der Mechanismus des Transports der Zerfallsprodukte zum Kolonierand, bzw. die eigentliche Natur des Zerfallsprozesses unklar. Simulationsrechnungen ergaben, dass eine kontinuierliche Ausdehnung der Kolonie auf Zellzerfallsprodukten sterbender Zellen nicht durch die Annahme erklärt werden kann, dass die Kolonien aus unkoordiniert wachsenden Einzelzellen aufgebaut sind. Aus diesem Grunde wurde für das Wachstum von Y. lipolytica die Hypothese abgeleitet, dass das Myzelium dieser Hefe aus schlauchartigen Hyphenzellen aufgebaut ist. Der gemessene Abfall der Biomassekonzentration im Kolonieinneren ist demnach die Konsequenz des Transports von Zytoplasma hin zum wachsenden Kolonierand, wo es in Abwesenheit von Glukose als sekundäre interne Nährstoffquelle assimiliert wird. Es ist zu beachten, dass diese Hypothese auch eine mechanistische Erklärung für die Ursachen der Vakuolisierung in Myzelien höherer filamentöser Pilze gibt
Feasibility of UV lasing without inversion in mercury vapor
We investigate the feasibility of UV lasing without inversion at a wavelength
of nm utilizing interacting dark resonances in mercury vapor. Our
theoretical analysis starts with radiation damped optical Bloch equations for
all relevant 13 atomic levels. These master equations are generalized by
considering technical phase noise of the driving lasers. From the Doppler
broadened complex susceptibility we obtain the stationary output power from
semiclassical laser theory. The finite overlap of the driving Gaussian laser
beams defines an ellipsoidal inhomogeneous gain distribution. Therefore, we
evaluate the intra-cavity field inside a ring laser self-consistently with
Fourier optics. This analysis confirms the feasibility of UV lasing and reveals
its dependence on experimental parameters.Comment: changes were made according to reviewer comments (accepted for
publication in JOSA B
- …