824 research outputs found

    Violating the string winding number maximally in Anti-de Sitter space

    Get PDF
    We study n-string scattering amplitudes in three-dimensional Anti-de Sitter space (AdS3). We focus our attention on the processes in which the winding number conservation is violated maximally; that is, those processes in which it is violated in n-2 units. A worldsheet conformal field theory calculation leads us to confirm a previous conjecture about the functional form of these observables.Comment: 15 pages. V2 references added and minor typo corrected. V3, V4 addendum on an alternative derivation of the main formula for short string

    Systematic Study of Short Range Antiferromagnetic Order and The Spin-Glass State in Lightly Doped La2-xSrxCuO4

    Full text link
    Systematic measurements of the magnetic susceptibility were performed on single crystals of lightly doped La2-xSrxCuO4 (x=0.03, 0.04 and 0.05). For all samples the temperature dependence of the in-plane magnetic susceptibility shows typical spin-glass features with spin-glass transition temperatures Tg of 6.3K, 5.5K and 5.0K for x=0.03, 0.04 and 0.05, respectively. The canonical spin-glass order parameter extracted from the in-plane susceptibility of all the samples follows a universal scaling curve. On the other hand, the out-of-plane magnetic susceptibility deviates from Curie law below a temperature Tdv, higher than Tg. Comparing with previous neutron scattering results with an instrumental energy resolution of 0.25 meV from Wakimoto et al., the x-dependence of Tdv is qualitatively the same as that of Tel, the temperature below which the elastic magnetic scattering develops around (pi, pi). Thus, a revised magnetic phase diagram in the lightly doped region of La2-xSrxCuO4 is proposed. The Curie constants calculated from the in-plane susceptibility are independent of the Sr concentration. On the basis of the cluster spin-glass model, this fact might reflect an inhomogeneous distribution of doped holes in the CuO2 plane, such as in a stripe structure.Comment: 7 pages, 6 figure

    Free Field Realization of Cylindrically Symmetric Einstein Gravity

    Get PDF
    Cylindrically reduced Einstein gravity can be regarded as an SL(2,R)/SO(2)SL(2,R)/SO(2) sigma model coupled to 2D dilaton gravity. By using the corresponding 2D diffeomorphism algebra of constraints and the asymptotic behaviour of the Ernst equation we show that the theory can be mapped by a canonical transformation into a set of free fields with a Minkowskian target space. We briefly discuss the quantization in terms of these free-field variables, which is considerably simpler than in the other approaches.Comment: 8 pages, no figures, discussions on the dual metric and on the free-field expansion are adde

    Inelastic neutron scattering study on the resonance mode in an optimally doped superconductor LaFeAsO0.92_{0.92}F0.08_{0.08}

    Full text link
    An optimally doped iron-based superconductor LaFeAsO0.92_{0.92}F0.08_{0.08} with Tc=29T_c = 29 K has been studied by inelastic powder neutron scattering. The magnetic excitation at Q=1.15Q=1.15 \AA1^{-1} is enhanced below TcT_c, leading to a peak at Eres13E_{res}\sim13 meV as the resonance mode, in addition to the formation of a gap at low energy below the crossover energy Δc10meV\Delta_{c}\sim10 meV. The peak energy at Q=1.15Q=1.15 \AA1^{-1} corresponds to 5.2kBTc5.2 k_B T_c in good agreement with the other values of resonance mode observed in the various iron-based superconductors, even in the high-TcT_c cuprates. Although the phonon density of states has a peak at the same energy as the resonance mode in the present superconductor, the QQ-dependence is consistent with the resonance being of predominately magnetic origin.Comment: 4 pages, 5 Postscript figure

    Competing ferromagnetism in high temperature copper oxide superconductors

    Full text link
    The extreme variability of observables across the phase diagram of the cuprate high temperature superconductors has remained a profound mystery, with no convincing explanation of the superconducting dome. While much attention has been paid to the underdoped regime of the hole-doped cuprates because of its proximity to a complex Mott insulating phase, little attention has been paid to the overdoped regime. Experiments are beginning to reveal that the phenomenology of the overdoped regime is just as puzzling. For example, the electrons appear to form a Landau Fermi liquid, but this interpretation is problematic; any trace of Mott phenomena, as signified by incommensurate antiferromagnetic fluctuations, is absent, and the uniform spin susceptibility shows a ferromagnetic upturn. Here we show and justify that many of these puzzles can be resolved if we assume that competing ferromagnetic fluctuations are simultaneously present with superconductivity, and the termination of the superconducting dome in the overdoped regime marks a quantum critical point beyond which there should be a genuine ferromagnetic phase at zero temperature. We propose new experiments, and make new predictions, to test our theory and suggest that effort must be mounted to elucidate the nature of the overdoped regime, if the problem of high temperature superconductivity is to be solved. Our approach places competing order as the root of the complexity of the cuprate phase diagram.Comment: The expanded published version with very minor difference

    Unusual magnetic susceptibility anisotropy in untwinned La_{2-x}Sr_xCuO_4 single crystals in the lightly-doped region

    Full text link
    We present a study of the magnetic susceptibility in carefully detwinned La_{2-x}Sr_{x}CuO_4 single crystals in the lightly-doped region (x=0-0.03), which demonstrates a remarkable in-plane anisotropy of the spin system. This anisotropy is found to persist after the long-range antiferromagnetic (AF) order is destroyed by hole doping, suggesting that doped holes break the AF order into domains in which the spin alignment is kept essentially intact. It turns out that the freezing of the spins taking place at low temperatures is also notably anisotropic, implying that the "spin-glass" feature is governed by the domain structure as well.Comment: 4 pages, 3 figures, accepted for publication in Phys.Rev.Let

    On classification of Poisson vertex algebras

    Get PDF
    We describe a conjectural classification of Poisson vertex algebras of CFT type and of Poisson vertex algebras in one differential variable (= scalar Hamiltonian operators)

    Diagonal static spin correlation in the low temperature orthorhombic Pccn phase of La1.55Nd0.4Sr0.05CuO4

    Full text link
    Elastic neutron scattering measurements have been performed on Nd, Sr co-doped La1.55Nd0.4Sr0.05CuO4, which exhibits a structural phase transition at Ts ~ 60K from the low temperature orthorhombic Bmab phase (labelled LTO1) to the low temperature orthorhombic Pccn phase (labelled LTO2). At low temperatures, well below Ts, elastic magnetic peaks are observed at the ``diagonal'' incommensurate (IC) positions (0, 1+/-0.055, 0), with modulation direction only along the orthorhombic b-axis just as in Nd-free La1.95Sr0.05CuO4. In the present study, the one-dimensionality of the IC modulation, which is naturally explained by a stripe model, is clearly demonstrated with our "single-domain" crystal. The temperature dependence of the IC peak intensity suggests a substantial contribution from the Nd3+ spins below ~3K. Consistent with this, the L dependence of the magnetic scattering is accurately accounted for by a model in which the contribution of the Nd3+ spins is explicitly included.Comment: 8 pages, 8 figure
    corecore