8 research outputs found

    Baroreflex sensitivity differs among same strain Wistar rats from the same laboratory

    Get PDF
    Previous studies showed that a proportion of normotensive Sprague-Dawley rats spontaneously exhibit lower baroreflex sensitivity. However, investigations have not yet been carried out on Wistar rats. We aimed to compare baroreflex sensitivity among rats from the same strain and the same laboratory. Male Wistar normotensive rats (300–400g) were studied. Cannulas were inserted into the abdominal aortic artery through the right femoral artery to measure mean arterial pressure and heart rate. Baroreflex was calculated as the derivative of the variation of heart rate in function of the mean arterial pressure variation (ΔHR/ΔMAP) tested with a depressor dose of sodium nitroprusside (50 µg/kg) and with a pressor dose of phenylephrine (8µg/kg) in the right femoral venous approach through an inserted cannula. We divided the rats into four groups: i) high bradycardic baroreflex, baroreflex gain less than −2 tested with phenylephrine; ii) low bradycardic baroreflex, baroreflex gain between −1 and −2 tested with phenylephrine; iii) high tachycardic baroreflex, baroreflex gain less than −3 tested with sodium nitroprusside; and iv) low tachycardic baroreflex, baroreflex gain between −1 and −3 tested with sodium nitroprusside. Approximately 71% of the rats presented a decrease in bradycardic reflex while around half showed an increase in tachycardic reflex. No significant changes in basal mean arterial pressure and heart rate, tachycardic and bradycardic peak and heart rate range were observed. There was a significant change in baroreflex sensitivity among rats from the same strain and the same laboratory

    An Iterative Scheme for Valid Polynomial Inequality Generation in Binary Polynomial Programming

    Full text link
    Semidefinite programming has been used successfully to build hierarchies of convex relaxations to approximate polynomial programs. This approach rapidly becomes computationally expensive and is often tractable only for problems of small sizes. We propose an iterative scheme that improves the semidefinite relaxations without incurring exponential growth in their size. The key ingredient is a dynamic scheme for generating valid polynomial inequalities for general polynomial programs. These valid inequalities are then used to construct better approximations of the original problem. As a result, the proposed scheme is in principle scalable to large general combinatorial optimization problems. For binary polynomial programs, we prove that the proposed scheme converges to the global optimal solution for interesting cases of the initial approximation of the problem. We also present examples illustrating the computational behaviour of the scheme and compare it to other methods in the literature

    Preprocessing and Regularization for Degenerate Semidefinite Programs

    No full text
    This paper presents a backward stable preprocessing technique for (nearly) ill-posed semidefinite programming, SDP, problems, i.e., programs for which the Slater constraint qualification, existence of strictly feasible points, (nearly) fails. Current popular algorithms for semidefinite programming rely on primal-dual interior-point, p-d i-p methods. These algorithms require the Slater constraint qualification for both the primal and dual problems. This assumption guarantees the existence of Lagrange multipliers, well-posedness of the problem, and stability of algorithms. However, there are many instances of SDPs where the Slater constraint qualification fails or nearly fails. Our backward stable preprocessing technique is based on applying the Borwein-Wolkowicz facial reduction process to find a finite number, k, of rank-revealing orthogonal rotations of the problem. After an appropriate truncation, this results in a smaller, well-posed, nearby problem that satisfies the Robinson constraint qualification, and one that can be solved by standard SDP solvers. Th
    corecore