110 research outputs found
Global ecological success of Thalassoma fishes in extreme coral reef habitats
Phenotypic adaptations can allow organisms to relax abiotic selection and facilitate their ecological success in challenging habitats, yet we have relatively little data for the prevalence of this phenomenon at macroecological scales. Using data on the relative abundance of coral reef wrasses and parrotfishes (f. Labridae) spread across three ocean basins and the Red Sea, we reveal the consistent global dominance of extreme wave-swept habitats by fishes in the genus Thalassoma, with abundances up to 15 times higher than any other labrid. A key locomotor modification—a winged pectoral fin that facilitates efficient underwater flight in high flow environments—is likely to have underpinned this global success, as numerical dominance by Thalassoma was contingent upon the presence of high-intensity wave energy. The ecological success of the most abundant species also varied with species richness and the presence of congeneric competitors. While several fish taxa have independently evolved winged pectoral fins, Thalassoma appears to have combined efficient high-speed swimming (to relax abiotic selection) with trophic versatility (to maximize exploitation of rich resources) to exploit and dominate extreme coral reef habitats around the worldFinancial assistance was provided by a
Yulgilbar Foundation Fellowship (C.J.F.), the
Australian Research Council (P.C.W., A.S.H.,
D.R.B.), and King Abdullah University of
Science & Technology (A.S.H.)
An inverse approach to Einstein's equations for non-conducting fluids
We show that a flow (timelike congruence) in any type warped product
spacetime is uniquely and algorithmically determined by the condition of zero
flux. (Though restricted, these spaces include many cases of interest.) The
flow is written out explicitly for canonical representations of the spacetimes.
With the flow determined, we explore an inverse approach to Einstein's
equations where a phenomenological fluid interpretation of a spacetime follows
directly from the metric irrespective of the choice of coordinates. This
approach is pursued for fluids with anisotropic pressure and shear viscosity.
In certain degenerate cases this interpretation is shown to be generically not
unique. The framework developed allows the study of exact solutions in any
frame without transformations. We provide a number of examples, in various
coordinates, including spacetimes with and without unique interpretations. The
results and algorithmic procedure developed are implemented as a computer
algebra program called GRSource.Comment: 9 pages revtex4. Final form to appear in Phys Rev
Constraints on the ecomorphological convergence of zooplanktivorous butterflyfishes
Whether distantly related organisms evolve similar strategies to meet the demands of a shared ecological niche depends on their evolutionary history and the nature of form–function relationships. In fishes, the visual identification and consumption of microscopic zooplankters, selective zooplanktivory, is a distinct type of foraging often associated with a suite of morphological specializations. Previous work has identified inconsistencies in the trajectory and magnitude of morphological change following transitions to selective zooplanktivory, alluding to the diversity and importance of ancestral effects. Here we investigate whether transitions to selective zooplanktivory have influenced the morphological evolution of marine butterflyfishes (family Chaetodontidae), a group of small-prey specialists well known for several types of high-precision benthivory. Using Bayesian ancestral state estimation, we inferred the recent evolution of zooplanktivory among benthivorous ancestors that hunted small invertebrates and browsed by picking or scraping coral polyps. Traits related to the capture of prey appear to be functionally versatile, with little morphological distinction between species with benthivorous and planktivorous foraging modes. In contrast, multiple traits related to prey detection or swimming performance are evolving toward novel, zooplanktivore-specific optima. Despite a relatively short evolutionary history, general morphological indistinctiveness, and evidence of constraint on the evolution of body size, convergent evolution has closed a near significant amount of the morphological distance between zooplanktivorous species. Overall, our findings describe the extent to which the functional demands associated with selective zooplanktivory have led to generalizable morphological features among butterflyfishes and highlight the importance of ancestral effects in shaping patterns of morphological convergence
Particle motion in the field of a five-dimensional charged black hole
In this paper, we have investigated the geodesics of neutral particles near a
five-dimensional charged black hole using a comparative approach. The effective
potential method is used to determine the location of the horizons and to study
radial and circular trajectories. This also helps us to analyze the stability
of radial and circular orbits. The radius of the innermost stable circular
orbits have also been determined. Contrary to the case of massive particles for
which, the circular orbits may have up to eight possible values of specific
radius, we find that the photons will only have two distinct values for the
specific radii of circular trajectories. Finally we have used the dynamical
systems analysis to determine the critical points and the nature of the
trajectories for the timelike and null geodesics.Comment: 15 pages, accepted for publication in Astrophysics and Space Scienc
Rotating metrics admitting non-perfect fluids in General Relativity
In this paper, by applying Newman-Janis algorithm in spherical symmetric
metrics, a class of embedded rotating solutions of field equations is
presented. These solutions admit non-perfect fluidsComment: LaTex, 39 page
Ecomorphological correlates of twenty dominant fish species of Amazonian floodplain lakes
Fishes inhabiting Amazonian floodplain lakes exhibits a great variety of body shape, which was a key advantage to colonize the several habitats that compose these areas adjacent to the large Amazon rivers. In this paper, we did an ecomorphological analysis of twenty abundant species, sampled in May and August 2011, into two floodplain lakes of the lower stretch of the Solimões River. The analysis detected differences among species, which could be probably associated with swimming ability and habitat use preferences. © 2017, Instituto Internacional de Ecologia. All rights reserved
Accelarated immune ageing is associated with COVID-19 disease severity
Background
The striking increase in COVID-19 severity in older adults provides a clear example of immunesenescence, the age-related remodelling of the immune system. To better characterise the association between convalescent immunesenescence and acute disease severity, we determined the immune phenotype of COVID-19 survivors and non-infected controls.
Results
We performed detailed immune phenotyping of peripheral blood mononuclear cells isolated from 103 COVID-19 survivors 3–5 months post recovery who were classified as having had severe (n = 56; age 53.12 ± 11.30 years), moderate (n = 32; age 52.28 ± 11.43 years) or mild (n = 15; age 49.67 ± 7.30 years) disease and compared with age and sex-matched healthy adults (n = 59; age 50.49 ± 10.68 years). We assessed a broad range of immune cell phenotypes to generate a composite score, IMM-AGE, to determine the degree of immune senescence. We found increased immunesenescence features in severe COVID-19 survivors compared to controls including: a reduced frequency and number of naïve CD4 and CD8 T cells (p < 0.0001); increased frequency of EMRA CD4 (p < 0.003) and CD8 T cells (p < 0.001); a higher frequency (p < 0.0001) and absolute numbers (p < 0.001) of CD28−ve CD57+ve senescent CD4 and CD8 T cells; higher frequency (p < 0.003) and absolute numbers (p < 0.02) of PD-1 expressing exhausted CD8 T cells; a two-fold increase in Th17 polarisation (p < 0.0001); higher frequency of memory B cells (p < 0.001) and increased frequency (p < 0.0001) and numbers (p < 0.001) of CD57+ve senescent NK cells. As a result, the IMM-AGE score was significantly higher in severe COVID-19 survivors than in controls (p < 0.001). Few differences were seen for those with moderate disease and none for mild disease. Regression analysis revealed the only pre-existing variable influencing the IMM-AGE score was South Asian ethnicity (
= 0.174, p = 0.043), with a major influence being disease severity (
= 0.188, p = 0.01).
Conclusions
Our analyses reveal a state of enhanced immune ageing in survivors of severe COVID-19 and suggest this could be related to SARS-Cov-2 infection. Our data support the rationale for trials of anti-immune ageing interventions for improving clinical outcomes in these patients with severe disease
- …