698 research outputs found
Can Acute Galactic Cosmic Radiation-Induced Bone Loss Be Mitigated By Dietary Modulation Of Inflammatory Cytokines?
The space environment includes weightlessness and galactic cosmic radiation (GCR), both of which can have a negative impact on bone parameters. In particular, acute exposures to space-relevant doses (2 Gy or less) of simulated GCR lead to a rapid acceleration of bone resorption activity and suppression of bone forming osteoblasts, resulting in diminished bone mineral density (BMD), strength and altered microarchitecture. A key mechanism driving these changes may be a radiation-induced increase in pro-inflammatory cytokines, such as TNF-α. Consuming a diet rich in omega-3 fatty acids has been associated with attenuated reductions in bone parameters in astronauts, mice and elderly humans with corresponding reductions in circulating inflammatory cytokines. PURPOSE: To test the hypothesis thata diet high in omega-3 fatty acids will mitigate radiation-induced bone loss and reduce inflammatory cytokines in bone osteocytes and serum. METHODS: Adult (30- to 50-week-old) female Lgr5-EGFP C57BL/6 mice (n=4-6 per group) were acclimated to a corn oil/cellulose (COC) or fish oil/pectin (FOP) diet for 3 weeks. Animals were subsequently randomized to total body low dose high-energy radiation (0.1, 0.25, 0.5 Gy of 1000 MeV/n 56Fe at 25 cGy/min at Brookhaven National Lab) or non-irradiated control (sham) and euthanized 8 weeks later. MicroCT (ScanCo, Switzerland) analyses were performed to assess bone geometry and microarchitecture at the mid-shaft and distal end of the femur. Significance was assessed using an αof 0.10. RESULTS:There was a significant main effect of diet on mid-shaft femur periosteal diameter (Peri.Dm) (p=0.001) and endocortical diameter (Endo. Dm.) (p\u3c0.001). The FOP diet led to larger Peri.Dm. (p\u3c0.051 for all) and Endo.Dm. (p\u3c0.41 for all) than did the COC diet at all doses. We could not detect an impact of 56Fe on cortical area or cancellous bone volume at the distal femur. Irradiation with 0.25 and 0.5 Gy in the FOP mice showed significant increases in distal femur volumetric BMD (p=0.014, p=0.063) and trabecular thickness (p=0.058, p=0.028), as compared with sham FOP mice. CONCLUSION: Though we did not detect a significant impact of radiation on bone parameters, these early data analyses suggest some modest benefits from a diet high in omega-3 fatty acids on cortical and cancellous bone parameters
Mapping Groundwater Dependent Ecosystems in California
BACKGROUND: Most groundwater conservation and management efforts focus on protecting groundwater for drinking water and for other human uses with little understanding or focus on the ecosystems that depend on groundwater. However, groundwater plays an integral role in sustaining certain types of aquatic, terrestrial and coastal ecosystems, and their associated landscapes. Our aim was to illuminate the connection between groundwater and surface ecosystems by identifying and mapping the distribution of groundwater dependent ecosystems (GDEs) in California. METHODOLOGY/PRINCIPAL FINDINGS: To locate where groundwater flow sustains ecosystems we identified and mapped groundwater dependent ecosystems using a GIS. We developed an index of groundwater dependency by analyzing geospatial data for three ecosystem types that depend on groundwater: (1) springs and seeps; (2) wetlands and associated vegetation alliances; and (3) stream discharge from groundwater sources (baseflow index). Each variable was summarized at the scale of a small watershed (Hydrologic Unit Code-12; mean size = 9,570 ha; n = 4,621), and then stratified and summarized to 10 regions of relative homogeneity in terms of hydrologic, ecologic and climatic conditions. We found that groundwater dependent ecosystems are widely, although unevenly, distributed across California. Although different types of GDEs are clustered more densely in certain areas of the state, watersheds with multiple types of GDEs are found in both humid (e.g. coastal) and more arid regions. Springs are most densely concentrated in the North Coast and North Lahontan, whereas groundwater dependent wetlands and associated vegetation alliances are concentrated in the North and South Lahontan and Sacramento River hydrologic regions. The percentage of land area where stream discharge is most dependent on groundwater is found in the North Coast, Sacramento River and Tulare Lake regions. GDE clusters are located at the highest percentage in the North Coast (an area of the highest annual rainfall totals), North Lahontan (an arid, high desert climate with low annual rainfall), and Sacramento River hydrologic regions. That GDEs occur in such distinct climatic and hydrologic settings reveals the widespread distribution of these ecosystems. CONCLUSIONS/SIGNIFICANCE: Protection and management of groundwater-dependent ecosystems are hindered by lack of information on their diversity, abundance and location. By developing a methodology that uses existing datasets to locate GDEs, this assessment addresses that knowledge gap. We report here on the application of this method across California, but believe the method can be expanded to regions where spatial data exist
The Crystal Structure of PPIL1 Bound to Cyclosporine A Suggests a Binding Mode for a Linear Epitope of the SKIP Protein
BACKGROUND: The removal of introns from pre-mRNA is carried out by a large macromolecular machine called the spliceosome. The peptidyl-prolyl cis/trans isomerase PPIL1 is a component of the human spliceosome and binds to the spliceosomal SKIP protein via a binding site distinct from its active site. PRINCIPAL FINDINGS: Here, we have studied the PPIL1 protein and its interaction with SKIP biochemically and by X-ray crystallography. A minimal linear binding epitope derived from the SKIP protein could be determined using a peptide array. A 36-residue region of SKIP centred on an eight-residue epitope suffices to bind PPIL1 in pull-down experiments. The crystal structure of PPIL1 in complex with the inhibitor cyclosporine A (CsA) was obtained at a resolution of 1.15 A and exhibited two bound Cd(2+) ions that enabled SAD phasing. PPIL1 residues that have previously been implicated in binding of SKIP are involved in the coordination of Cd(2+) ions in the present crystal structure. Employing the present crystal structure, the determined minimal binding epitope and previously published NMR data, a molecular docking study was performed. In the docked model of the PPIL1.SKIP interaction, a proline residue of SKIP is buried in a hydrophobic pocket of PPIL1. This hydrophobic contact is encircled by several hydrogen bonds between the SKIP peptide and PPIL1. CONCLUSION: We characterized a short, linear epitope of SKIP that is sufficient to bind the PPIL1 protein. Our data indicate that this SKIP peptide could function in recruiting PPIL1 into the core of the spliceosome. We present a molecular model for the binding mode of SKIP to PPIL1 which emphasizes the versatility of cyclophilin-type PPIases to engage in additional interactions with other proteins apart from active site contacts despite their limited surface area
Two-year changes in quality of life in elderly patients with low-energy hip fractures. A case-control study
<p>Abstract</p> <p>Background</p> <p>The long-term effect of hip fracture on health-related quality of life (HRQOL) and global quality of life (GQOL) has not been thoroughly studied in prospective case-control studies.</p> <p>Aims</p> <p>a) to explore whether patients with low-energy hip fracture regain their pre-fracture levels in HRQOL and GQOL compared with changes in age- and sex-matched controls over a two year period; b) to identify predictors of changes in HRQOL and GQOL after two years.</p> <p>Methods</p> <p>We examined 61 patients (mean age = 74 years, <it>SD </it>= 10) and 61 matched controls (mean age = 73 years, <it>SD </it>= 8). The Short Form 36 assessed HRQOL and the Quality of Life Scale assessed GQOL. Paired samples <it>t </it>tests and multiple linear regression analyses were applied.</p> <p>Results</p> <p>HRQOL decreased significantly between baseline and one-year follow-up in patients with hip fractures, within all the SF-36 domains (<it>p </it>< 0.04), except for social functioning (<it>p </it>= 0.091). There were no significant decreases within the SF-36 domains in the controls. Significantly decreased GQOL scores (<it>p </it>< 0.001) were observed both within patients and within controls between baseline and one-year follow-up. The same pattern persisted between baseline and two-year follow-up, except for the HRQOL domain mental health (<it>p </it>= 0.193). The patients with hip fractures did not regain their HRQOL and GQOL. Worsened physical health after two years was predicted by being a patient with hip fracture (B = -5.8, <it>p </it>< 0.001) and old age (B = -1.0, <it>p </it>= 0.015), while worsened mental health was predicted by co-morbidity (B = -2.2, <it>p </it>= 0.029). No significant predictors of differential changes in GQOL were identified.</p> <p>Conclusion</p> <p>A hip fracture has a long-term impact on HRQOL and is a strong predictor of worsened physical health. Our data emphasize the importance of preventing hip fracture in the elderly to maintain physical health. This knowledge should be included in decision-making and health care plans.</p
Effectiveness of neonatal pulse oximetry screening for detection of critical congenital heart disease in daily clinical routineâresults from a prospective multicenter study
Pulse oximetry screening (POS) has been proposed as an effective, noninvasive, inexpensive tool allowing earlier diagnosis of critical congenital heart disease (cCHD). Our aim was to test the hypothesis that POS can reduce the diagnostic gap in cCHD in daily clinical routine in the setting of tertiary, secondary and primary care centres. We conducted a prospective multicenter trial in Saxony, Germany. POS was performed in healthy term and post-term newborns at the age of 24â72 h. If an oxygen saturation (SpO2) of â€95% was measured on lower extremities and confirmed after 1 h, complete clinical examination and echocardiography were performed. POS was defined as false-negative when a diagnosis of cCHD was made after POS in the participating hospitals/at our centre. From July 2006âJune 2008, 42,240 newborns from 34 institutions have been included. Seventy-two children were excluded due to prenatal diagnosis (nâ=â54) or clinical signs of cCHD (nâ=â18) before POS. Seven hundred ninety-five newborns did not receive POS, mainly due to early discharge after birth (nâ=â727; 91%). In 41,445 newborns, POS was performed. POS was true positive in 14, false positive in 40, true negative in 41,384 and false negative in four children (three had been excluded for violation of study protocol). Sensitivity, specificity, positive and negative predictive value were 77.78%, 99.90%, 25.93% and 99.99%, respectively. With POS as an adjunct to prenatal diagnosis, physical examination and clinical observation, the percentage of newborns with late diagnosis of cCHD was 4.4%. POS can substantially reduce the postnatal diagnostic gap in cCHD, and false-positive results leading to unnecessary examinations of healthy newborns are rare. POS should be implemented in routine postnatal care
Clinical trials update of the European Organization for Research and Treatment of Cancer Breast Cancer Group
The present clinical trial update consists of a review of two of eight current studies (the 10981-22023 AMAROS trial and the 10994 p53 trial) of the European Organization for Research and Treatment of Cancer Breast Cancer Group, as well as a preview of the MIND-ACT trial. The AMAROS trial is designed to prove equivalent local/regional control for patients with proven axillary lymph node metastasis by sentinel node biopsy if treated with axillary radiotherapy instead of axillary lymph node dissection, with reduced morbidity. The p53 trial started to assess the potential predictive value of p53 using a functional assay in yeast in patients with locally advanced/inflammatory or large operable breast cancer prospectively randomised to a taxane regimen versus a nontaxane regimen
Full-length Ebola glycoprotein accumulates in the endoplasmic reticulum
The Filoviridae family comprises of Ebola and Marburg viruses, which are known to cause lethal hemorrhagic fever. However, there is no effective anti-viral therapy or licensed vaccines currently available for these human pathogens. The envelope glycoprotein (GP) of Ebola virus, which mediates entry into target cells, is cytotoxic and this effect maps to a highly glycosylated mucin-like region in the surface subunit of GP (GP1). However, the mechanism underlying this cytotoxic property of GP is unknown. To gain insight into the basis of this GP-induced cytotoxicity, HEK293T cells were transiently transfected with full-length and mucin-deleted (Îmucin) Ebola GP plasmids and GP localization was examined relative to the nucleus, endoplasmic reticulum (ER), Golgi, early and late endosomes using deconvolution fluorescent microscopy. Full-length Ebola GP was observed to accumulate in the ER. In contrast, GPÎmucin was uniformly expressed throughout the cell and did not localize in the ER. The Ebola major matrix protein VP40 was also co-expressed with GP to investigate its influence on GP localization. GP and VP40 co-expression did not alter GP localization to the ER. Also, when VP40 was co-expressed with the nucleoprotein (NP), it localized to the plasma membrane while NP accumulated in distinct cytoplasmic structures lined with vimentin. These latter structures are consistent with aggresomes and may serve as assembly sites for filoviral nucleocapsids. Collectively, these data suggest that full-length GP, but not GPÎmucin, accumulates in the ER in close proximity to the nuclear membrane, which may underscore its cytotoxic property
Modulation of spinal excitability following neuromuscular electrical stimulation superimposed to voluntary contraction
Purpose. Neuromuscular electrical stimulation (NMES) superimposed on voluntary muscle contraction has been recently
shown as an innovative training modality within sport and rehabilitation, but its effects on the neuromuscular system are
still unclear. The aim of this study was to investigate acute responses in spinal excitability, as measured by the Hoffmann
(H) reflex, and in maximal voluntary contraction (MVIC) following NMES superimposed to voluntary isometric
contractions (NMES+ISO) compared to passive NMES only and to voluntary isometric contractions only (ISO). Method.
Fifteen young adults were required to maintain an ankle plantar-flexor torque of 20% MVC for 20 repetitions during each
experimental condition (NMES+ISO, NMES and ISO). Surface electromyography was used to record peak-to-peak Hreflex and motor waves following percutaneous stimulation of the posterior tibial nerve in the dominant limb. An
isokinetic dynamometer was used to assess maximal voluntary contraction output of the ankle plantar flexor muscles.
Results. H-reflex amplitude was increased by 4.5% after the NMES+ISO condition (p < 0.05), while passive NMES and
ISO conditions showed a decrease by 7.8% (p < 0.05) and no change in reflex responses, respectively. There was no
change in amplitude of maximal motor wave and in MVIC torque during each experimental condition. Conclusion. The
reported facilitation of spinal excitability following NMES+ISO could be due to a combination of greater motor neuronal
and corticospinal excitability, thus suggesting that NMES superimposed onto isometric voluntary contractions may
provide a more effective neuromuscular stimulus and, hence, training modality compared to NMES alone
The 20 year evolution of dobutamine stress cardiovascular magnetic resonance
Over the past 20 years, investigators world-wide have developed and utilized dobutamine magnetic resonance stress testing procedures for the purpose of identifying ischemia, viability, and cardiac prognosis. This article traces these developments and reviews the data utilized to substantiate this relatively new noninvasive imaging procedure
p53 as a potential predictive factor of response to chemotherapy: feasibility of p53 assessment using a functional test in yeast from trucut biopsies in breast cancer patients
Assessment of the predictive value of p53 requires the testing of large numbers of samples from patients enrolled in prospective phase III clinical trials. The goal of this study was to determine whether p53 status can be determined by p53 yeast functional assay using the limiting amounts of material that can typically be obtained in prospective phase III trials (particularly when chemotherapy is given before surgery). All patients presenting with a clinically palpable tumour which could be considered large enough to perform a trucut biopsy (â©Ÿ2âcm breast tumour) were eligible for this study. Two trucut biopsies and one incisional biopsy were performed on the surgical specimens (mastectomy or tumourectomy). Samples were snap frozen and cryostat sections were taken for histology and p53 testing. Thirty patients were included. Three samples out of 90 failed to give any p53 PCR products, probably because these samples contained almost entirely fibrous tissue. Of the 87 samples that could be tested, the incisional and trucut biopsies results were fully concordant in every case. p53 could be defined in 97% of patients by double trucut biopsy. Eight out of 30 tumours tested were mutant for p53 (27%). p53 status can be reliably determined by yeast assay from single frozen sections of trucut biopsies. Histological examination before p53 testing is essential to exclude cases where the p53 result may reflect only the status of the normal cells in the biopsy
- âŠ