5,912 research outputs found
Diffusion-controlled phase growth on dislocations
We treat the problem of diffusion of solute atoms around screw dislocations.
In particular, we express and solve the diffusion equation, in radial symmetry,
in an elastic field of a screw dislocation subject to the flux conservation
boundary condition at the interface of a new phase. We consider an incoherent
second-phase precipitate growing under the action of the stress field of a
screw dislocation. The second-phase growth rate as a function of the
supersaturation and a strain energy parameter is evaluated in spatial
dimensions d=2 and d=3. Our calculations show that an increase in the amplitude
of dislocation force, e.g. the magnitude of the Burgers vector, enhances the
second-phase growth in an alloy. Moreover, a relationship linking the
supersaturation to the precipitate size in the presence of the elastic field of
dislocation is calculated.Comment: 10 pages, 4 figures, a revised version of the paper presented in
MS&T'08, October 5-9, 2008, Pittsburg
Deep generative modeling for single-cell transcriptomics.
Single-cell transcriptome measurements can reveal unexplored biological diversity, but they suffer from technical noise and bias that must be modeled to account for the resulting uncertainty in downstream analyses. Here we introduce single-cell variational inference (scVI), a ready-to-use scalable framework for the probabilistic representation and analysis of gene expression in single cells ( https://github.com/YosefLab/scVI ). scVI uses stochastic optimization and deep neural networks to aggregate information across similar cells and genes and to approximate the distributions that underlie observed expression values, while accounting for batch effects and limited sensitivity. We used scVI for a range of fundamental analysis tasks including batch correction, visualization, clustering, and differential expression, and achieved high accuracy for each task
The emerging structure of the Extended Evolutionary Synthesis: where does Evo-Devo fit in?
The Extended Evolutionary Synthesis (EES) debate is gaining ground in contemporary evolutionary biology. In parallel, a number of philosophical standpoints have emerged in an attempt to clarify what exactly is represented by the EES. For Massimo Pigliucci, we are in the wake of the newest instantiation of a persisting Kuhnian paradigm; in contrast, Telmo Pievani has contended that the transition to an EES could be best represented as a progressive reformation of a prior Lakatosian scientific research program, with the extension of its Neo-Darwinian core and the addition of a brand-new protective belt of assumptions and auxiliary hypotheses. Here, we argue that those philosophical vantage points are not the only ways to interpret what current proposals to ‘extend’ the Modern Synthesis-derived ‘standard evolutionary theory’ (SET) entail in terms of theoretical change in evolutionary biology. We specifically propose the image of the emergent EES as a vast network of models and interweaved representations that, instantiated in diverse practices, are connected and related in multiple ways. Under that assumption, the EES could be articulated around a paraconsistent network of evolutionary theories (including some elements of the SET), as well as models, practices and representation systems of contemporary evolutionary biology, with edges and nodes that change their position and centrality as a consequence of the co-construction and stabilization of facts and historical discussions revolving around the epistemic goals of this area of the life sciences. We then critically examine the purported structure of the EES—published by Laland and collaborators in 2015—in light of our own network-based proposal. Finally, we consider which epistemic units of Evo-Devo are present or still missing from the EES, in preparation for further analyses of the topic of explanatory integration in this conceptual framework
High Energy Gamma-Ray Emission From Blazars: EGRET Observations
We will present a summary of the observations of blazars by the Energetic
Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory
(CGRO). EGRET has detected high energy gamma-ray emission at energies greater
than 100 MeV from more that 50 blazars. These sources show inferred isotropic
luminosities as large as ergs s. One of the most
remarkable characteristics of the EGRET observations is that the gamma-ray
luminosity often dominates the bolometric power of the blazar. A few of the
blazars are seen to exhibit variability on very short time-scales of one day or
less. The combination of high luminosities and time variations seen in the
gamma-ray data indicate that gamma-rays are an important component of the
relativistic jet thought to characterize blazars. Currently most models for
blazars involve a beaming scenario. In leptonic models, where electrons are the
primary accelerated particles, gamma-ray emission is believed to be due to
inverse Compton scattering of low energy photons, although opinions differ as
to the source of the soft photons. Hardronic models involve secondary
production or photomeson production followed by pair cascades, and predict
associated neutrino production.Comment: 16 pages, 7 figures, style files included. Invited review paper in
"Observational Evidence for Black Holes in the Universe," 1999, ed. S. K.
Chakrabarti (Dordrecht: Kluwer), 215-23
Photonic quantum technologies
The first quantum technology, which harnesses uniquely quantum mechanical
effects for its core operation, has arrived in the form of commercially
available quantum key distribution systems that achieve enhanced security by
encoding information in photons such that information gained by an eavesdropper
can be detected. Anticipated future quantum technologies include large-scale
secure networks, enhanced measurement and lithography, and quantum information
processors, promising exponentially greater computation power for particular
tasks. Photonics is destined for a central role in such technologies owing to
the need for high-speed transmission and the outstanding low-noise properties
of photons. These technologies may use single photons or quantum states of
bright laser beams, or both, and will undoubtably apply and drive
state-of-the-art developments in photonics
Circumstellar discs: What will be next?
This prospective chapter gives our view on the evolution of the study of
circumstellar discs within the next 20 years from both observational and
theoretical sides. We first present the expected improvements in our knowledge
of protoplanetary discs as for their masses, sizes, chemistry, the presence of
planets as well as the evolutionary processes shaping these discs. We then
explore the older debris disc stage and explain what will be learnt concerning
their birth, the intrinsic links between these discs and planets, the hot dust
and the gas detected around main sequence stars as well as discs around white
dwarfs.Comment: invited review; comments welcome (32 pages
A search for the decay modes B+/- to h+/- tau l
We present a search for the lepton flavor violating decay modes B+/- to h+/-
tau l (h= K,pi; l= e,mu) using the BaBar data sample, which corresponds to 472
million BBbar pairs. The search uses events where one B meson is fully
reconstructed in one of several hadronic final states. Using the momenta of the
reconstructed B, h, and l candidates, we are able to fully determine the tau
four-momentum. The resulting tau candidate mass is our main discriminant
against combinatorial background. We see no evidence for B+/- to h+/- tau l
decays and set a 90% confidence level upper limit on each branching fraction at
the level of a few times 10^-5.Comment: 15 pages, 7 figures, submitted to Phys. Rev.
The fate of redundant cues: Further analysis of the redundancy effect
Pearce, Dopson, Haselgrove, and Esber (Journal of Experimental Psychology: Animal Behavior Processes, 38, 167–179, 2012) conducted a series of experiments with rats and pigeons in which the conditioned responding elicited by two types of redundant cue was compared. One of these redundant cues was a blocked cue X from A+ AX+ training, whereas the other was cue Y from a simple discrimination BY+ CY–. Greater conditioned responding was elicited by X than by Y; we refer to this difference as the redundancy effect. To test an explanation of this effect in terms of comparator theory (Denniston, Savastano, & Miller, 2001), a single group of rats in Experiment 1 received training of the form A+ AX+ BY+ CY–, followed by an A– Y+ discrimination. Responding to the individual cues was tested both before and after the latter discrimination. In addition to a replication of the redundancy effect during the earlier test, we observed stronger responding to B than to X, both during the earlier test and, in contradiction of the theory, after the A– Y+ discrimination. In Experiment 2, a blocking group received A+ AX+, a continuous group received AX+ BX–, and a partial group received AX± BX± training. Subsequent tests with X again demonstrated the redundancy effect, but also revealed a stronger response in the partial than in the continuous group. This pattern of results is difficult to explain with error-correction theories that assume that stimuli compete for associative strength during conditioning. We suggest, instead, that the influence of a redundant cue is determined by its relationship with the event with which it is paired, and by the attention it is paid
- …
